-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path08-lambda-the-ultimate.rkt
296 lines (229 loc) · 6 KB
/
08-lambda-the-ultimate.rkt
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
#lang racket
;
; Chapter 8 of The Little Schemer:
; Lambda the Ultimate
;
; Code examples assemled by Qi Tianyuan<[email protected]>.
;
(define atom?
(lambda (x)
(and (not (pair? x)) (not (null? x)))))
(define rember-f
(lambda (test? a l)
(cond
[(null? l) '()]
[(test? a (car l)) (rember-f test? a (cdr l))]
[else (cons (car l) (rember-f test? a (cdr l)))])))
; Examples of rember-f
;
(display "tests of rember-f \n")
(rember-f eq? 2 '(1 2 3 4 5))
; ==> '(1 3 4 5)
(define eq?-c
(lambda (a)
(lambda (x)
(eq? x a))))
; Example of eq?-c
;
(display "tests of eq?-c \n")
((eq?-c 'tuna) 'tuna) ; #t
((eq?-c 'tuna) 'salad) ; #f
(define eq?-salad
(eq?-c 'salad))
(display "(eq?-salad 'salad) \n")
(eq?-salad 'salad)
(eq?-salad 'tuna)
(define rember-f-curry
(lambda (test?)
(lambda (a l)
(cond
[(null? l) '()]
[(test? a (car l)) ((rember-f-curry test?) a (cdr l))]
[else (cons (car l) ((rember-f-curry test?) a (cdr l)))]))))
; Test of rember-f
;
(display "tests of rember-f-curry \n")
((rember-f-curry eq?) 2 '(1 2 3 4 5))
; ==> '(1 3 4 5)
(define insertL-f
(lambda (test?)
(lambda (new old l)
(cond
[(null? l) '()]
[(test? (car l) old) (cons new ((insertL-f test?) new old (cdr l)))]
[else (cons (car l) ((insertL-f test?) new old (cdr l)))]))))
; Test insertR-f
(display "tests of insertL-f \n")
((insertL-f eq?)
'd
'e
'(a b c e f g d h)) ; '(a b c d e f g d h)
(define insertR-f
(lambda (test?)
(lambda (new old l)
(cond
[(null? l) '()]
[(test? (car l) old) (cons old (cons new (cdr l)))]
[else (cons (car l) ((insertR-f test?) new old (cdr l)))]))))
; Test insertR-f
(display "tests of insertR-f \n")
((insertR-f eq?)
'e
'd
'(a b c d f g d h)) ; '(a b c d e f g d h)
; different with origin
(define seqL
(lambda (new old l)
(cons new l)))
(define seqR
(lambda (new old l)
(cons old (cons new (cdr l)))))
(define insert-g
(lambda (seq)
(lambda (new old l)
(cond
[(null? l) '()]
[(eq? (car l) old) (seq new old l)]
[else (cons (car l) ((insert-g seq) new old (cdr l)))]))))
; insertL is now just (insert-g seqL)
;
(define insertL (insert-g seqL))
; insertR is now just (insert-g seqR)
;
(define insertR (insert-g seqR))
; Test insertL
;
(display "tests of insert-g \n")
(insertL
'd
'e
'(a b c e f g d h)) ; '(a b c d e f g d h)
; Test insertR
(insertR
'e
'd
'(a b c d f g d h)) ; '(a b c d e f g d h)
; (define insertL
; (insert-g
; (lambda (new old l)
; ( cons new ( cons old l)))))
(define seqS
(lambda (new old l)
(cons new (cdr l))))
(define subst (insert-g seqS))
; Test subst
;
(display "tests of subst \n")
(subst
'topping
'fudge
'(ice cream with fudge for dessert)) ; '(ice cream with topping for dessert)
(define yyy
(lambda (a l)
((insert-g seqrem) #f a l)))
(define seqrem
(lambda (new old l) (cdr l)))
(yyy
'sausage
'(pizza with sausage and bacon)) ; '(pizza with and bacon)
(define atom-to-function
(lambda(x)
(cond
[(eq? x '+) +]
[(eq? x '*) *]
[else expt])))
(define operator
(lambda (aexp)
(car aexp)))
(atom-to-function (operator '(+ 5 3))) ; + (function plus)
; The value function rewritten to use abstraction
;
(define value
(lambda (nexp)
(cond
((atom? nexp) nexp)
(else
((atom-to-function (operator nexp))
(value (1st-sub-exp nexp))
(value (2nd-sub-exp nexp)))))))
; value uses 1st-sub-exp
;
(define 1st-sub-exp
(lambda (aexp)
(car (cdr aexp))))
; value uses 2nd-sub-exp
(define 2nd-sub-exp
(lambda (aexp)
(car (cdr (cdr aexp)))))
; Test value
;
(value 13) ; 13
(value '(o+ 1 3)) ; 4
(value '(o+ 1 (o^ 3 4))) ; 82
(define multirember-f
(lambda (test?)
(lambda (a lat)
(cond
[(null? lat) '()]
[(test? a (car lat)) ((multirember-f test?) a (cdr lat))]
[else (cons (car lat) ((multirember-f test?) a (cdr lat)))]))))
; Test multirember-f
;
(display "test of multirember-f \n")
((multirember-f eq?) 'tuna '(shrimp salad tuna salad and tuna))
; ==> '(shrimp salad salad and)
(define multirember-eq? (multirember-f eq?))
(define multiremberT
(lambda (test? lat)
(cond
[(null? lat) '()]
[(test? (car lat)) (multiremberT test? (cdr lat))]
[else (cons (car lat) (multiremberT test? (cdr lat)))])))
(define eq?-tuna
(eq?-c 'tuna))
; Example of multiremberT
;
(display "tests of multiremberT \n")
(multiremberT
eq?-tuna
'(shrimp salad tuna salad and tuna))
; ==> '(shrimp salad salad and)
(define multiremember&co
(lambda (a lat col)
(cond
((null? lat)
(col '() '()))
((eq? (car lat) a)
(multiremember&co a (cdr lat)
(lambda (newlat seen)
(col newlat (cons (car lat) seen)))))
(else
(multiremember&co a (cdr lat)
(lambda (newlat seen)
(col (cons (car lat) newlat) seen)))))))
(define even?
(lambda (n)
(= (* ( / 2) 2) n)))
(define evens-only*&co
(lambda (l col)
(cond
((null? l)
(col '() 1 0))
((atom? (car l))
(cond
((even? (car l))
(evens-only*&co (cdr l)
(lambda (newl p s)
(col (cons (car l) newl) (* (car l) p) s))))
(else
(evens-only*&co (cdr l)
(lambda (newl p s)
(col newl p (+ (car l) s)))))))
(else
(evens-only*&co (car l)
(lambda (al ap as)
(evens-only*&co (cdr l)
(lambda (dl dp ds)
(col (cons al dl)
(* ap dp)
(+ as ds))))))))))