forked from open-mmlab/mmagic
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbiggan_ajbrock-sn_8xb32-1500kiters_imagenet1k-128x128.py
65 lines (58 loc) · 1.66 KB
/
biggan_ajbrock-sn_8xb32-1500kiters_imagenet1k-128x128.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
_base_ = [
'../_base_/models/biggan/base_biggan_128x128.py',
'../_base_/datasets/imagenet_noaug_128.py',
'../_base_/gen_default_runtime.py',
]
# define model
ema_config = dict(
type='ExponentialMovingAverage',
interval=1,
momentum=0.0001,
update_buffers=True,
start_iter=20000)
model = dict(ema_config=ema_config)
train_cfg = dict(max_iters=1500000)
# define dataset
train_dataloader = dict(
batch_size=32, num_workers=8, dataset=dict(data_root='data/imagenet'))
# define optimizer
optim_wrapper = dict(
generator=dict(
accumulative_counts=8,
optimizer=dict(type='Adam', lr=0.0001, betas=(0.0, 0.999), eps=1e-6)),
discriminator=dict(
accumulative_counts=8,
optimizer=dict(type='Adam', lr=0.0004, betas=(0.0, 0.999), eps=1e-6)))
# VIS_HOOK
custom_hooks = [
dict(
type='VisualizationHook',
interval=10000,
fixed_input=True,
# vis ema and orig at the same time
vis_kwargs_list=dict(
type='Noise',
name='fake_img',
sample_model='ema/orig',
target_keys=['ema', 'orig'])),
]
metrics = [
dict(
type='FrechetInceptionDistance',
prefix='FID-Full-50k',
fake_nums=50000,
inception_style='StyleGAN',
sample_model='ema'),
dict(
type='IS',
prefix='IS-50k',
fake_nums=50000,
inception_style='StyleGAN',
sample_model='ema')
]
# save multi best checkpoints
default_hooks = dict(
checkpoint=dict(
save_best=['FID-Full-50k/fid', 'IS-50k/is'], rule=['less', 'greater']))
val_evaluator = dict(metrics=metrics)
test_evaluator = dict(metrics=metrics)