-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain_t7.py
183 lines (160 loc) · 9.59 KB
/
main_t7.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import os
import argparse
import torch
import torch.nn as nn
import time
from tqdm import tqdm
from torch.utils.data.distributed import DistributedSampler
from model.VSLNet_t7 import VSLNet, build_optimizer_and_scheduler
from util.data_util import load_video_features, save_json, load_json
from util.data_gen import gen_or_load_dataset
from util.data_loader_t7 import get_train_loader, get_test_loader
from util.runner_utils_t7 import set_th_config, convert_length_to_mask, eval_test, filter_checkpoints, \
get_last_checkpoint
parser = argparse.ArgumentParser()
# data parameters
parser.add_argument('--save_dir', type=str, default='datasets_t7', help='path to save processed dataset')
parser.add_argument('--task', type=str, default='charades', help='target task')
parser.add_argument('--fv', type=str, default='new', help='[new | org] for visual features')
parser.add_argument('--max_pos_len', type=int, default=128, help='maximal position sequence length allowed')
# model parameters
parser.add_argument("--word_size", type=int, default=None, help="number of words")
parser.add_argument("--char_size", type=int, default=None, help="number of characters")
parser.add_argument("--word_dim", type=int, default=300, help="word embedding dimension")
parser.add_argument("--video_feature_dim", type=int, default=1024, help="video feature input dimension")
parser.add_argument("--char_dim", type=int, default=50, help="character dimension, set to 100 for activitynet")
parser.add_argument("--dim", type=int, default=128, help="hidden size")
parser.add_argument("--highlight_lambda", type=float, default=5.0, help="lambda for highlight region")
parser.add_argument("--num_heads", type=int, default=8, help="number of heads")
parser.add_argument("--drop_rate", type=float, default=0.2, help="dropout rate")
parser.add_argument('--predictor', type=str, default='rnn', help='[rnn | transformer]')
# training/evaluation parameters
parser.add_argument("--gpu_idx", type=str, default="0", help="GPU index")
parser.add_argument("--seed", type=int, default=12345, help="random seed")
parser.add_argument("--mode", type=str, default="train", help="[train | test]")
parser.add_argument("--epochs", type=int, default=100, help="number of epochs")
parser.add_argument("--batch_size", type=int, default=16, help="batch size")
parser.add_argument("--num_train_steps", type=int, default=None, help="number of training steps")
parser.add_argument("--init_lr", type=float, default=0.0001, help="initial learning rate")
parser.add_argument("--clip_norm", type=float, default=1.0, help="gradient clip norm")
parser.add_argument("--warmup_proportion", type=float, default=0.0, help="warmup proportion")
parser.add_argument("--extend", type=float, default=0.1, help="highlight region extension")
parser.add_argument("--period", type=int, default=100, help="training loss print period")
parser.add_argument('--model_dir', type=str, default='ckpt_t7', help='path to save trained model weights')
parser.add_argument('--model_name', type=str, default='vslnet', help='model name')
parser.add_argument('--suffix', type=str, default=None, help='set to the last `_xxx` in ckpt repo to eval results')
# ##############################################
# #第一步:分布式训练加速
# parser.add_argument("--local_rank", help="local device id on current node",
# type=int)
# ##############################################
configs = parser.parse_args()
# local_rank=configs.local_rank
# #第2步,初始化分布式环境
# #######################################################################################
# #word_size表示当前结点有多少GPU卡,local_rank表示当前进程运行在哪台设备上
# n_gpus = 4 #所以world_size和nproc_per_node参数需要设置的一样
# torch.distributed.init_process_group("nccl", world_size=n_gpus, rank=configs.local_rank)
# torch.cuda.set_device(configs.local_rank)
# #######################################################################################
# set tensorflow configs
set_th_config(configs.seed)
# prepare or load dataset
dataset = gen_or_load_dataset(configs)
configs.char_size = dataset['n_chars']
configs.word_size = dataset['n_words']
# get train and test loader
visual_features = load_video_features(os.path.join('data', 'features', configs.task, configs.fv), configs.max_pos_len)
train_loader = get_train_loader(dataset=dataset['train_set'], video_features=visual_features, configs=configs)
val_loader = None if dataset['val_set'] is None else get_test_loader(dataset['val_set'], visual_features, configs)
test_loader = get_test_loader(dataset=dataset['test_set'], video_features=visual_features, configs=configs)
configs.num_train_steps = len(train_loader) * configs.epochs
num_train_batches = len(train_loader)
num_val_batches = 0 if val_loader is None else len(val_loader)
num_test_batches = len(test_loader)
# Device configuration
cuda_str = 'cuda' if configs.gpu_idx is None else 'cuda:{}'.format(configs.gpu_idx)
device = torch.device(cuda_str if torch.cuda.is_available() else 'cpu')
# create model dir
home_dir = os.path.join(configs.model_dir, '_'.join([configs.model_name, configs.task, configs.fv,
str(configs.max_pos_len), configs.predictor]))
if configs.suffix is not None:
home_dir = home_dir + '_' + configs.suffix
model_dir = os.path.join(home_dir, "model")
# train and test
if configs.mode.lower() == 'train':
if not os.path.exists(model_dir):
os.makedirs(model_dir)
eval_period = num_train_batches // 2
save_json(vars(configs), os.path.join(model_dir, 'configs.json'), sort_keys=True, save_pretty=True)
# build model
model = VSLNet(configs=configs, word_vectors=dataset['word_vector']).to(device)
optimizer, scheduler = build_optimizer_and_scheduler(model, configs=configs)
# start training
best_r1i7 = -1.0
score_writer = open(os.path.join(model_dir, "eval_results.txt"), mode="w", encoding="utf-8")
print('start training...', flush=True)
global_step = 0
start_time=time.time()
for epoch in tqdm(range(configs.epochs)):
model.train()
for data in tqdm(train_loader, total=num_train_batches, desc='Epoch %3d / %3d' % (epoch + 1, configs.epochs)):
global_step += 1
_, vfeats, vfeat_lens, word_ids, char_ids, s_labels, e_labels, h_labels = data
# prepare features
vfeats, vfeat_lens = vfeats.to(device), vfeat_lens.to(device)
word_ids, char_ids = word_ids.to(device), char_ids.to(device)
s_labels, e_labels, h_labels = s_labels.to(device), e_labels.to(device), h_labels.to(device)
# generate mask
query_mask = (torch.zeros_like(word_ids) != word_ids).float().to(device)
video_mask = convert_length_to_mask(vfeat_lens).to(device)
# compute logits
h_score, start_logits, end_logits = model(word_ids, char_ids, vfeats, video_mask, query_mask)
# compute loss
highlight_loss = model.compute_highlight_loss(h_score, h_labels, video_mask)
loc_loss = model.compute_loss(start_logits, end_logits, s_labels, e_labels)
total_loss = loc_loss + configs.highlight_lambda * highlight_loss
# compute and apply gradients
optimizer.zero_grad()
total_loss.backward()
nn.utils.clip_grad_norm_(model.parameters(), configs.clip_norm) # clip gradient
optimizer.step()
scheduler.step()
# evaluate
if global_step % eval_period == 0 or global_step % num_train_batches == 0:
model.eval()
r1i3, r1i5, r1i7, mi, score_str = eval_test(model=model, data_loader=test_loader, device=device,
mode='test', epoch=epoch + 1, global_step=global_step)
print('\nEpoch: %2d | Step: %5d | r1i3: %.2f | r1i5: %.2f | r1i7: %.2f | mIoU: %.2f' % (
epoch + 1, global_step, r1i3, r1i5, r1i7, mi), flush=True)
score_writer.write(score_str)
score_writer.flush()
if r1i7 >= best_r1i7:
best_r1i7 = r1i7
torch.save(model.state_dict(), os.path.join(model_dir, '{}_{}.t7'.format(configs.model_name,
global_step)))
# only keep the top-3 model checkpoints
filter_checkpoints(model_dir, suffix='t7', max_to_keep=3)
model.train()
score_writer.close()
#测试的分布式还没改
elif configs.mode.lower() == 'test':
if not os.path.exists(model_dir):
raise ValueError('No pre-trained weights exist')
# load previous configs
pre_configs = load_json(os.path.join(model_dir, "configs.json"))
parser.set_defaults(**pre_configs)
configs = parser.parse_args()
# build model
model = VSLNet(configs=configs, word_vectors=dataset['word_vector']).to(device)
# get last checkpoint file
filename = get_last_checkpoint(model_dir, suffix='t7')
model.load_state_dict(torch.load(filename))
model.eval()
r1i3, r1i5, r1i7, mi, _ = eval_test(model=model, data_loader=test_loader, device=device, mode='test')
print("\n" + "\x1b[1;31m" + "Rank@1, IoU=0.3:\t{:.2f}".format(r1i3) + "\x1b[0m", flush=True)
print("\x1b[1;31m" + "Rank@1, IoU=0.5:\t{:.2f}".format(r1i5) + "\x1b[0m", flush=True)
print("\x1b[1;31m" + "Rank@1, IoU=0.7:\t{:.2f}".format(r1i7) + "\x1b[0m", flush=True)
print("\x1b[1;31m" + "{}:\t{:.2f}".format("mean IoU".ljust(15), mi) + "\x1b[0m", flush=True)
end_time=time.time()
print("程序运行时间:",end_time-start_time,"s")