-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathopt_cal.py
446 lines (379 loc) · 19.9 KB
/
opt_cal.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
# -*- coding:utf-8 -*-
# author:[email protected]
# @Time: 2023/7/20 15:06
import random
import re
import sys
import time
import traceback
import numpy as np
from PySide6.QtCore import QThread, Signal
from PySide6.QtGui import QAction
from PySide6.QtWidgets import QApplication, QMainWindow, QVBoxLayout, QPushButton, QLineEdit, QPlainTextEdit, QLabel, \
QComboBox, QWidget, QGridLayout, QDoubleSpinBox, QSpinBox
from qt_material import apply_stylesheet
from deap import base, creator, tools, algorithms
from pyswarm import pso
from scipy.optimize import minimize, NonlinearConstraint
from sympy import symbols, lambdify
class EvoWorker(QThread):
result = Signal(float, list, str, str) # Changed here
def __init__(self, window, func, func_constraints, bounds, method):
super().__init__()
self.window = window
self.func = func
self.constraints_func = func_constraints
self.bounds = bounds
self.method = method
def _get_ga_params_by_name(self, name):
box = QSpinBox if "size" in name else QDoubleSpinBox
return self.window.gaParamsGridWidget.findChild(box, name).value()
def _get_pso_params_by_name(self, name):
box = QSpinBox if "size" in name else QDoubleSpinBox
return self.window.psoParamsGridWidget.findChild(box, name).value()
def ga_optimize(self, func, lb, ub):
creator.create("FitnessMin", base.Fitness, weights=(-1.0,)) # 目标是最小化问题,权重为负
creator.create("Individual", list, fitness=creator.FitnessMin) # 创建个体类
toolbox = base.Toolbox() # 工具箱
hof = tools.HallOfFame(1)
# 为每个基因单独设定范围
for i in range(len(lb)):
toolbox.register(f"attr_float{i}", random.uniform, lb[i], ub[i])
# 个体由 len(lb) 个基因组成
toolbox.register("individual", tools.initCycle, creator.Individual,
[toolbox.__getattribute__(f"attr_float{i}") for i in range(len(lb))],
n=1)
toolbox.register("population", tools.initRepeat, list, toolbox.individual) # 种群由多个个体组成
# 目标函数
def objective(individual):
return func(*individual), # 注意,这里返回的是一个元组,用 * 将 individual 展开为多个参数
# 可行性判断,用于处理约束项
def feasible(individual):
if len(self.constraints_func) == 0:
return True
# 逐个判断约束函数是否满足
for _func, _, op, _ in self.constraints_func:
if op == "=": # 等式约束
if abs(_func(*individual)) > 1e-6:
return False
else: # 不等式约束(<=)
if _func(*individual) > 0:
return False
return True
toolbox.register("evaluate", objective) # 注册目标函数
toolbox.decorate("evaluate", tools.DeltaPenality(feasible, 1e6)) # 当个体不满足约束条件时,其适应度会被惩罚1e6
toolbox.register("mate", tools.cxBlend, alpha=self._get_ga_params_by_name("cross_prob")) # 交叉操作
toolbox.register("mutate", tools.mutGaussian,
mu=self._get_ga_params_by_name("gaussian_mu"),
sigma=self._get_ga_params_by_name("gaussian_sigma"),
indpb=self._get_ga_params_by_name("mutate_prob")) # 突变操作
toolbox.register("select", tools.selTournament, tournsize=self._get_ga_params_by_name("select_size")) # 选择操作
# 初始化种群
pop = toolbox.population(n=self._get_ga_params_by_name("population_size")) # 种群大小为50
# 执行遗传算法
result = algorithms.eaSimple(pop, toolbox,
cxpb=self._get_ga_params_by_name("cross_prob"),
mutpb=self._get_ga_params_by_name("mutate_prob"),
ngen=self._get_ga_params_by_name("generation_size"),
halloffame=hof,
verbose=False) # 执行100代遗传算法
best_individual = tools.selBest(pop, k=1)[0] # 选择最优个体
return best_individual, best_individual.fitness.values[0] # 返回最优解和对应的函数值
def run(self):
try:
start_time = time.time()
lb = [b[0] for b in self.bounds]
ub = [b[1] for b in self.bounds]
if self.method == 'GA':
solution, value = self.ga_optimize(self.func, lb, ub)
elif self.method == 'PSO':
solution, value = pso(lambda x: self.func(*x),
lb,
ub,
swarmsize=self._get_pso_params_by_name("swarm_size"),
omega=self._get_pso_params_by_name("omega"),
phip=self._get_pso_params_by_name("phip"),
phig=self._get_pso_params_by_name("phig"),
maxiter=self._get_pso_params_by_name("maxiter_size"),
minstep=self._get_pso_params_by_name("min_step"),
minfunc=self._get_pso_params_by_name("min_func"))
else:
constraints = []
for con in self.constraints_func:
con_func, _, op, v = con
if op == "=":
constraints.append(NonlinearConstraint(lambda x: con_func(*x), v, v))
else:
constraints.append(NonlinearConstraint(lambda x: con_func(*x), -np.inf, 0))
res = minimize(lambda x: self.func(*x), [b[0] for b in self.bounds], bounds=self.bounds,
method=self.method, constraints=constraints)
solution, value = res.x, res.fun
# check constraints if all satisfied
constraints_status_text = ""
if self.constraints_func:
constraints_status_text = "check constraints satisfied status:\n"
for _func, func_str, op, v in self.constraints_func:
res = _func(*solution)
if op == "=":
status = "√" if abs(res) < 1e-6 else "×"
constraints_status_text += f"{func_str} {op} 0(left = {res}) {status}\n"
else:
status = "√" if res <= 0 else "×"
_op = op
if op == ">":
_op = "<"
elif op == ">=":
_op = "<="
constraints_status_text += f"{func_str} {_op} 0(left = {res}) {status}\n"
elapsed_time = time.time() - start_time
self.result.emit(value, solution, constraints_status_text, f'Elapsed time: {elapsed_time} seconds')
except Exception as e:
self.window.log_area.appendPlainText(traceback.format_exc())
class HelpWindow(QMainWindow):
def __init__(self):
super().__init__()
self.setWindowTitle("Help")
layout = QVBoxLayout()
self.help_area = QPlainTextEdit()
self.help_area.setReadOnly(True)
layout.addWidget(self.help_area)
container = QWidget()
container.setLayout(layout)
self.setCentralWidget(container)
def display_help(self, text):
self.help_area.setPlainText(text)
class MainWindow(QMainWindow):
def __init__(self):
super().__init__()
self.psoParamsGridWidget = None
self.gaParamsGridWidget = None
self.setWindowTitle("Function Optimizer")
help_menu = self.menuBar().addMenu("Help")
help_action = QAction("How to use", self)
help_action.triggered.connect(self.show_help)
help_menu.addAction(help_action)
self.help_window = HelpWindow()
self.layout = QVBoxLayout()
# 在你的界面类的__init__方法中
self.variables_input = QLineEdit()
self.layout.addWidget(QLabel("Enter variable names separated by comma:"))
self.layout.addWidget(self.variables_input)
self.function_input = QLineEdit()
self.layout.addWidget(QLabel("Enter the function:"))
self.layout.addWidget(self.function_input)
self.bounds_input = QLineEdit()
self.layout.addWidget(QLabel("Enter the bounds (option,comma separated):"))
self.layout.addWidget(self.bounds_input)
self.constraints_input = QPlainTextEdit()
self.constraints_input.setVisible(False)
self.constraints_label = QLabel("Enter the constraints(option,newline seperated):")
self.constraints_label.setVisible(False)
self.layout.addWidget(self.constraints_label)
self.layout.addWidget(self.constraints_input)
self.target_select = QComboBox()
self.target_select.addItems(["Minimize", "Maximize"])
self.layout.addWidget(QLabel("Select the target:"))
self.layout.addWidget(self.target_select)
self.algorithm_select = QComboBox()
self.algorithm_select.addItems(
['Powell', 'CG', 'BFGS', 'L-BFGS-B', 'TNC', 'COBYLA', 'SLSQP', 'trust-constr',
'GA', 'PSO'])
self.algorithm_select.currentIndexChanged.connect(self.display_option_params)
self.layout.addWidget(QLabel("Select the algorithm:"))
self.layout.addWidget(self.algorithm_select)
self.add_ga_params(False)
self.add_pso_params(False)
self.start_button = QPushButton("Start")
self.start_button.clicked.connect(self.start_optimization)
self.layout.addWidget(self.start_button)
self.result_area = QPlainTextEdit()
self.result_area.setReadOnly(True)
self.layout.addWidget(QLabel("Result:"))
self.layout.addWidget(self.result_area)
self.log_area = QPlainTextEdit()
self.log_area.setReadOnly(True)
self.layout.addWidget(QLabel("Logs:"))
self.layout.addWidget(self.log_area)
self.time_label = QLabel()
self.layout.addWidget(self.time_label)
self.container = QWidget()
self.container.setLayout(self.layout)
self.setCentralWidget(self.container)
def add_ga_params(self, visible=False):
grid = QGridLayout()
spinBoxes = [QSpinBox(), QSpinBox(), QDoubleSpinBox(), QDoubleSpinBox(),
QDoubleSpinBox(), QDoubleSpinBox(), QSpinBox()]
tooltips = ['generation_size', 'population_size', 'cross_prob', 'mutate_prob',
'gaussian_mu', 'gaussian_sigma', 'select_size']
labels = ['GA Evolution Generations',
'GA Population Size',
'GA Crossover Probability',
'GA Mutation Probability',
'GA Gaussian Mutation Mean',
'GA Gaussian Mutation Standard Deviation',
'GA Selection Size']
default_values = [100, 500, 0.5, 0.1, 0, 1, 3]
min_max_values = [
(10, 50000),
(50, 50000),
(0.01, 0.99),
(0.01, 0.99),
(0, 1),
(0.1, 3),
(1, 100)
]
assert len(tooltips) == len(labels) == len(default_values) == len(min_max_values)
# 创建若干个QDoubleSpinBox并添加到网格布局中
for i in range(len(labels)):
label = QLabel(tooltips[i])
label.setToolTip(labels[i]) # 设置鼠标悬停提示
spinbox = spinBoxes[i]
spinbox.setMinimum(min_max_values[i][0])
spinbox.setMaximum(min_max_values[i][1])
spinbox.setObjectName(tooltips[i])
spinbox.setValue(default_values[i])
grid.addWidget(label, i // 2, 2 * (i % 2)) # 添加标签到网格布局,3 * 2布局
grid.addWidget(spinbox, i // 2, 2 * (i % 2) + 1) # 添加spinbox到网格布局,3 * 2布局
# 创建一个新的QWidget,将网格布局添加到新的QWidget中
self.gaParamsGridWidget = QWidget()
self.gaParamsGridWidget.setLayout(grid)
self.gaParamsGridWidget.setVisible(visible)
self.gaParamsGridWidget.setObjectName("ga_prams")
# 将新的QWidget添加到垂直布局中
self.layout.addWidget(self.gaParamsGridWidget)
def add_pso_params(self, visible=False):
grid = QGridLayout()
spinBoxes = [QSpinBox(), QSpinBox(), QDoubleSpinBox(), QDoubleSpinBox(),
QDoubleSpinBox(), QDoubleSpinBox(), QDoubleSpinBox()]
tooltips = ['swarm_size', 'maxiter_size', 'omega', 'phip',
'phig', 'min_step', 'min_func']
labels = ['The number of particles in the swarm (Default: 100)',
'The maximum number of iterations for the swarm to search (Default: 100)',
'Particle velocity scaling factor (Default: 0.5)',
'Scaling factor to search away from the particle\'s best known position (Default: 0.5)',
'Scaling factor to search away from the swarm\'s best known position (Default: 0.5)',
'The minimum stepsize of swarm\'s best position before the search terminates (Default: 1e-8)',
'The minimum change of swarm\'s best objective value before the search terminates (Default: 1e-8)'
]
default_values = [100, 100, 0.5, 0.5, 0.5, 1e-8, 1e-8]
min_max_values = [
(10, 50000),
(10, 50000),
(0.01, 0.99),
(0.01, 0.99),
(0.01, 0.99),
(1e-9, 0.99),
(1e-9, 0.99)
]
assert len(tooltips) == len(labels) == len(default_values) == len(min_max_values)
# 创建若干个QDoubleSpinBox并添加到网格布局中
for i in range(len(labels)):
label = QLabel(tooltips[i])
label.setToolTip(labels[i]) # 设置鼠标悬停提示
spinbox = spinBoxes[i]
spinbox.setMinimum(min_max_values[i][0])
spinbox.setMaximum(min_max_values[i][1])
spinbox.setObjectName(tooltips[i])
spinbox.setValue(default_values[i])
grid.addWidget(label, i // 2, 2 * (i % 2)) # 添加标签到网格布局,3 * 2布局
grid.addWidget(spinbox, i // 2, 2 * (i % 2) + 1) # 添加spinbox到网格布局,3 * 2布局
# 创建一个新的QWidget,将网格布局添加到新的QWidget中
self.psoParamsGridWidget = QWidget()
self.psoParamsGridWidget.setLayout(grid)
self.psoParamsGridWidget.setVisible(visible)
self.psoParamsGridWidget.setObjectName("pso_prams")
# 将新的QWidget添加到垂直布局中
self.layout.addWidget(self.psoParamsGridWidget)
def display_option_params(self):
self._display_evo_params()
self._display_constraints_params()
def _display_evo_params(self):
if self.algorithm_select.currentText() == "GA":
self.gaParamsGridWidget.setVisible(True)
self.psoParamsGridWidget.setVisible(False)
elif self.algorithm_select.currentText() == "PSO":
self.psoParamsGridWidget.setVisible(True)
self.gaParamsGridWidget.setVisible(False)
else:
self.psoParamsGridWidget.setVisible(False)
self.gaParamsGridWidget.setVisible(False)
def _display_constraints_params(self):
if self.algorithm_select.currentText() in ["trust-constr", "GA"]:
self.constraints_label.setVisible(True)
self.constraints_input.setVisible(True)
else:
self.constraints_label.setVisible(False)
self.constraints_input.setVisible(False)
def start_optimization(self):
self.log_area.clear()
self.result_area.clear()
self.log_area.appendPlainText("Starting optimization...")
try:
# 假设变量名由用户输入,并用逗号分隔
variables_input = self.variables_input.text()
var_names = variables_input.split(',')
# 使用sympy.symbols来定义这些变量
vars_sympy = symbols(var_names)
func_str = self.function_input.text()
# 确保在eval的环境中定义了所有的变量
eval_env = {var: vars_sympy[i] for i, var in enumerate(var_names)}
func_sympy = eval(func_str, eval_env)
if self.target_select.currentText() == "Maximize":
func_sympy = -func_sympy
func = lambdify(vars_sympy, func_sympy, 'numpy')
if len(self.bounds_input.text()) == 0:
bounds = [(-1e6, 1e6) for _ in range(len(var_names))]
else:
bounds_str = self.bounds_input.text().split(',')
bounds = [(float(b.split(':')[0]), float(b.split(':')[1])) for b in bounds_str]
constraints_str = self.constraints_input.toPlainText()
constraints = constraints_str.split("\n")
func_constraints = []
if len(constraints_str) > 0:
for con in constraints:
a, b = re.split(">=|<=|>|<|=", con)
if ">=" in con:
func_str = f"{b} - ({a})"
else:
func_str = f"{a} - {b}"
func_sympy = eval(func_str, eval_env)
tmp_func = lambdify(vars_sympy, func_sympy, 'numpy')
if ">" not in con and "<" not in con and "=" in con:
func_constraints.append((tmp_func, func_str, "=", float(b)))
else:
op = None
for s in [">=", "<=", ">", "<"]:
if s in con:
op = s
break
func_constraints.append((tmp_func, func_str, op, float(b)))
method = self.algorithm_select.currentText()
self.worker = EvoWorker(self, func, func_constraints, bounds, method)
self.worker.result.connect(self.on_result)
self.worker.start()
except Exception as e:
self.log_area.appendPlainText(traceback.format_exc())
def on_result(self, value, x, constraints_status_text, time_str):
self.log_area.appendPlainText(f'Found solution: x = {x}, y = {value}\n' + constraints_status_text)
self.result_area.setPlainText(f'x = {x}, y = {value}\n')
self.time_label.setText(time_str)
def show_help(self):
help_text = """
This is a function optimizer. To use it, follow these steps:
1. Enter the function to optimize in the 'Enter the function:' field. Use 'x1' and 'x2' as variables. Example: '(x1-1)**2 + (x1-x2)**4 + (x2-3)**2'
2. Enter the bounds for the variables in the 'Enter the bounds:' field. The bounds are comma separated, and each bound is in the form 'min:max'. Example: '0:10, 1:10'
3. Select the optimization target in the 'Select the target:' drop-down menu. Choose 'Minimize' to find the minimum of the function, or 'Maximize' to find the maximum.
4. Select the optimization algorithm in the 'Select the algorithm:' drop-down menu. You can choose from the available algorithms.
5. Click the 'Start' button to start the optimization. The result will be shown in the 'Logs:' area, and the elapsed time will be shown below.
Note: The program uses numerical optimization methods, and the result may not be accurate for certain complex functions or for functions with multiple local minima/maxima.
"""
self.help_window.display_help(help_text)
self.help_window.show()
if __name__ == '__main__':
app = QApplication(sys.argv)
# with open("style.qss", "r") as fin:
# app.setStyleSheet(fin.read())
apply_stylesheet(app, "light_blue.xml")
window = MainWindow()
window.show()
sys.exit(app.exec())