-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrobotmodel.py
255 lines (132 loc) · 8.16 KB
/
robotmodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import numpy as np
from math_utils import math_utils
from interactions import interactions as inter
from arenas import arena
from arenas import arenas_t
from dynamics_utils import Phase
from algo_spp_evol import algo
'''
真实无人集群个体模型
'''
phase_fun = Phase()
math_fun = math_utils()
algo_fun = algo()
class robotmodel:
def __init__(self):
self.PreferredVelocities = 0
self.SteppedPhase = 0
self.NubmerOfNeighbours = 0
self.TempPhase = 0
def InitializePreferredVelocities(self, phase, FlockingParams, SitParams, UnitParams):
self.PreferredVelocities = np.zeros((SitParams.NumberOfAgents, 3), dtype =float) # 期望速度速度信息
for i in range(SitParams.NumberOfAgents):
for j in range(3):
self.PreferredVelocities[i][j] = 0.0
self.SteppedPhase = Phase(SitParams.NumberOfAgents, phase.NumberOfInnerStates)
self.TempPhase = Phase(SitParams.NumberOfAgents, phase.NumberOfInnerStates)
# 欧拉法求解运动学
def RealCoptForceLaw(self, phase, RealVelocity, UnitParams,
FlockingParams, DeltaT, TimeStepReal,
TimeStepLooped, WhitchAgent):
PreviousVelocity = phase_fun.GetAgentsVelocity(phase, 0)
OutputInnerStates = np.zeros(3)
OutputVelocity = np.zeros(3)
PreferredVelocities = np.zeros((20, 3)) # 注意数量
for i in range(phase.NumberOfInnerStates):
OutputInnerStates[i] = phase.InnerStates[0][i]
if TimeStepLooped % ((int)(UnitParams.t_GPS) / DeltaT) == 0:
TempTarget = math_fun.NullVect(3)
TempTarget = algo_fun. CalulatePreferredVelocity(phase, 0, FlockingParams,UnitParams.t_del, TimeStepReal * DeltaT)
for i in range(3):
PreferredVelocities[WhitchAgent][i] = TempTarget[i] # 计算应该有的速度s
# print("%d秒第%d个Agent的期望速度为:" % (TimeStepLooped, WhitchAgent), PreferredVelocities[WhitchAgent])
for i in range(2):
OutputVelocity[i] = RealVelocity[i] + (DeltaT / UnitParams.Tau_PID_XY)*(PreferredVelocities[WhitchAgent][i]-PreviousVelocity[i]) # 计算一个时间步XY应该有的速度变化量
OutputVelocity[2] = RealVelocity[2] + (DeltaT / UnitParams.Tau_PID_Z) * (PreferredVelocities[WhitchAgent][i] - PreviousVelocity[i]) # 计算一个时间步Z应该有的速度变化量
return OutputVelocity, OutputInnerStates
# 计算智能体观测到的智能体的相空间,参数可扩展
def CreatPhase(self, phase, WhitchAgent, R_C, packet_loss_ratio, packet_loss_distance, OderBydistance):
LocalActualPhaseToCreate = Phase(phase.NumberOfAgents,phase.NumberOfInnerStates)
for i in range(phase.NumberOfAgents):
LocalActualPhaseToCreate.RealIDs[i] = phase.RealIDs[i]
for j in range(3):
LocalActualPhaseToCreate.Coordinates[i][j] = phase.Coordinates[i][j]
LocalActualPhaseToCreate.Velocities[i][j] = phase.Velocities[i][j]
for j in range(phase.NumberOfInnerStates):
LocalActualPhaseToCreate.InnerStates[i][j] = phase.InnerStates[i][j]
ActualAgentsPosition = np.zeros(3)
ActualAgentsPosition = phase_fun.GetAgentsCoordinates(phase, WhitchAgent)
if OderBydistance is True:
NubmerOfNeighbours = phase_fun.SelectNearbyVisibleAgents(LocalActualPhaseToCreate, ActualAgentsPosition, R_C,
(packet_loss_ratio / packet_loss_distance / packet_loss_distance) if(packet_loss_distance > 0) else 0)
else:
phase_fun.SwapAgents(LocalActualPhaseToCreate, WhitchAgent, 0)
NubmerOfNeighbours = 1
# 添加延迟和GPS不精确,造成的位置和速度差异(可用于其他接口,暂时略过)
LocalActualPhaseToCreate.NumberOfAgents = NubmerOfNeighbours
return LocalActualPhaseToCreate
# 更新速度和位置
def Step(self, OutputPhase, PhaseData, UnitParams,
FlockingParams, SitParams,
TimeStepLooped, TimeStepReal, CountCollisions,
ConditionReset, AgentsInDanger, Accelerations):
CheckVelocityCache = np.zeros(3)
CheckAccelerationCache = np.zeros(3)
CheckDiffrenceCache = np.zeros(3)
UnitVectDifference = np.zeros(3)
Collisions = 0
LocalActualPhase = PhaseData[TimeStepLooped]
PreviousColl = 0
if CountCollisions is True:
Collisions += phase_fun.HowManyCollisions(LocalActualPhase, AgentsInDanger, CountCollisions, SitParams.Radius) # AgentsInDanger是布尔型的数组
# 更新位置
Velocity = np.zeros(3)
CoordinatesToStep = np.zeros(3)
for j in range(SitParams.NumberOfAgents):
Velocity = phase_fun.GetAgentsVelocity(LocalActualPhase, j)
CoordinatesToStep = phase_fun.GetAgentsCoordinates(LocalActualPhase, j)
for i in range(3):
CoordinatesToStep[i] += Velocity[i] * SitParams.DeltaT
phase_fun.InsertAgentsCoordinates(self.SteppedPhase, CoordinatesToStep, j)
# GPS 跳过
# 风速跳过
# 真实力学规律
RealCoptForceVector = np.zeros(3)
ActualRealVelocity = np.zeros(3)
for j in range(SitParams.NumberOfAgents):
# Debug部分暂时省略
# 创建所有邻居的状态空间
TempPhase = self.CreatPhase(LocalActualPhase, j, UnitParams.R_C,UnitParams.packet_loss_ratio,
UnitParams.packet_loss_distance, (TimeStepLooped % (int)(UnitParams.t_GPS / SitParams.DeltaT) == 0) )
ActuralRealVelocity = phase_fun.GetAgentsVelocity(LocalActualPhase, j)
# 使用欧拉谷山法求解牛顿运动学问题
RealCoptForceVector, ChangedInnerStateOfActualAgent = self.RealCoptForceLaw(TempPhase, ActualRealVelocity, UnitParams, FlockingParams,
SitParams.DeltaT, TimeStepReal, TimeStepLooped, j)
CheckVelocityCache = math_fun.VectSum(CheckVelocityCache, RealCoptForceVector)
# 更新InnerStates
phase_fun.InsertAgentsVelocity(self.SteppedPhase, CheckVelocityCache, j)
for k in range(PhaseData[0].NumberOfInnerStates):
self.SteppedPhase.InnerStates[j][k] = ChangedInnerStateOfActualAgent[k]
# 在添加噪声之前保存加速度的最大值
OnePerDeltaT = 1.0 / SitParams.DeltaT
for i in range(SitParams.NumberOfAgents):
CheckAccelerationCache = phase_fun.GetAgentsVelocity(LocalActualPhase, i)
CheckVelocityCache = phase_fun.GetAgentsVelocity(self.SteppedPhase, i)
CheckDiffrenceCache = math_fun.VectDifference(CheckVelocityCache, CheckAccelerationCache)
UnitVectDifference = math_fun.UnitVect(CheckAccelerationCache)
Accelerations[i] = math_fun.VectAbs(CheckDiffrenceCache) * OnePerDeltaT # 一秒钟的加速度
if Accelerations[i] > UnitParams.a_max:
for k in range(3):
CheckAccelerationCache[k] = CheckAccelerationCache[k] + UnitParams.a_max * SitParams.DeltaT * UnitVectDifference[k]
phase_fun.InsertAgentsVelocity(self.SteppedPhase, CheckVelocityCache, i)
Accelerations[i] = UnitParams.a_max
# 外部噪声
# 重置智能体位置
# 将相写入相空间
for j in range(SitParams.NumberOfAgents):
for i in range(3):
OutputPhase.Coordinates[j][i] = self.SteppedPhase.Coordinates[j][i]
OutputPhase.Velocities[j][i] = self.SteppedPhase.Velocities[j][i]
for i in range(self.SteppedPhase.NumberOfInnerStates):
OutputPhase.InnerStates[j][i] = self.SteppedPhase.InnerStates[j][i]
return Collisions