Skip to content

Commit 0226f09

Browse files
author
Documenter.jl
committed
build based on 8a1cb65
1 parent 5d9d4ac commit 0226f09

File tree

188 files changed

+18451
-3
lines changed

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

188 files changed

+18451
-3
lines changed

stable

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
v1.5.0
1+
v1.6.0

v1

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1 +1 @@
1-
v1.5.0
1+
v1.6.0

v1.6

Lines changed: 1 addition & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1 @@
1+
v1.6.0

v1.6.0/404.html

Lines changed: 32 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,32 @@
1+
<!DOCTYPE html>
2+
<html lang="en-US" dir="ltr">
3+
<head>
4+
<meta charset="utf-8">
5+
<meta name="viewport" content="width=device-width,initial-scale=1">
6+
<title>404 | Lux.jl Docs</title>
7+
<meta name="description" content="Not Found">
8+
<meta name="generator" content="VitePress v1.6.3">
9+
<link rel="preload stylesheet" href="/v1.6.0/assets/style.COo5Gn0V.css" as="style">
10+
<link rel="preload stylesheet" href="/v1.6.0/vp-icons.css" as="style">
11+
12+
<script type="module" src="/v1.6.0/assets/app.DVqBTE3f.js"></script>
13+
<link rel="preload" href="/v1.6.0/assets/inter-roman-latin.Di8DUHzh.woff2" as="font" type="font/woff2" crossorigin="">
14+
<script async src="https://www.googletagmanager.com/gtag/js?id=G-Q8GYTEVTZ2"></script>
15+
<script>window.dataLayer=window.dataLayer||[];function gtag(){dataLayer.push(arguments)}gtag("js",new Date),gtag("config","G-Q8GYTEVTZ2");</script>
16+
<link rel="apple-touch-icon" sizes="180x180" href="/apple-touch-icon.png">
17+
<link rel="icon" type="image/png" sizes="32x32" href="/favicon-32x32.png">
18+
<link rel="icon" type="image/png" sizes="16x16" href="/favicon-16x16.png">
19+
<link rel="icon" href="/favicon.ico">
20+
<link rel="manifest" href="/site.webmanifest">
21+
<link rel="icon" href="REPLACE_ME_DOCUMENTER_VITEPRESS_FAVICON">
22+
<script src="/versions.js"></script>
23+
<script src="/v1.6.0/siteinfo.js"></script>
24+
<script id="check-dark-mode">(()=>{const e=localStorage.getItem("vitepress-theme-appearance")||"auto",a=window.matchMedia("(prefers-color-scheme: dark)").matches;(!e||e==="auto"?a:e==="dark")&&document.documentElement.classList.add("dark")})();</script>
25+
<script id="check-mac-os">document.documentElement.classList.toggle("mac",/Mac|iPhone|iPod|iPad/i.test(navigator.platform));</script>
26+
</head>
27+
<body>
28+
<div id="app"></div>
29+
<script>window.__VP_HASH_MAP__=JSON.parse("{\"api_accelerator_support_mldatadevices.md\":\"Bd2k60lv\",\"api_building_blocks_luxcore.md\":\"ACo-5O6q\",\"api_building_blocks_weightinitializers.md\":\"b5W8qej9\",\"api_lux_autodiff.md\":\"Dr8kuRYR\",\"api_lux_contrib.md\":\"D-f9zHGD\",\"api_lux_distributed_utils.md\":\"CMdQWTa0\",\"api_lux_interop.md\":\"C6CYPOO3\",\"api_lux_layers.md\":\"C8LQq_bu\",\"api_lux_utilities.md\":\"BS-xvo1r\",\"api_nn_primitives_activationfunctions.md\":\"CNxfxNkC\",\"api_nn_primitives_luxlib.md\":\"K5Q0X0HV\",\"api_nn_primitives_nnlib.md\":\"D_ilfjmO\",\"api_testing_functionality_luxtestutils.md\":\"BX2FV-xG\",\"index.md\":\"Ps6cmMR3\",\"introduction_citation.md\":\"2mqMWlGN\",\"introduction_index.md\":\"R4vQq9eW\",\"introduction_overview.md\":\"eM4agSzQ\",\"introduction_resources.md\":\"D5JvXI7K\",\"introduction_updating_to_v1.md\":\"BXsmnStu\",\"manual_autodiff.md\":\"CLGgQd45\",\"manual_compiling_lux_models.md\":\"B5lg_O4R\",\"manual_debugging.md\":\"CxBSYrSh\",\"manual_dispatch_custom_input.md\":\"BnkpiKSq\",\"manual_distributed_utils.md\":\"8L0VnQ9U\",\"manual_exporting_to_jax.md\":\"DWo8t_uF\",\"manual_freezing_model_parameters.md\":\"D53ACd6D\",\"manual_gpu_management.md\":\"Bj-JbwUy\",\"manual_interface.md\":\"D5rpEZMs\",\"manual_migrate_from_flux.md\":\"C1N3CP0x\",\"manual_nested_autodiff.md\":\"BWFjVD_a\",\"manual_performance_pitfalls.md\":\"BeZ3uvzJ\",\"manual_preferences.md\":\"Db9QzqtD\",\"manual_weight_initializers.md\":\"BPE85grN\",\"tutorials_advanced_1_gravitationalwaveform.md\":\"Jfd2Z7bL\",\"tutorials_beginner_1_basics.md\":\"DMdaxvn1\",\"tutorials_beginner_2_polynomialfitting.md\":\"CCmQBnsi\",\"tutorials_beginner_3_simplernn.md\":\"CMYOoQ6m\",\"tutorials_beginner_4_simplechains.md\":\"Cy0tlzXT\",\"tutorials_beginner_5_optimizationintegration.md\":\"C4YK23gN\",\"tutorials_index.md\":\"Db_pX6l3\",\"tutorials_intermediate_1_neuralode.md\":\"Bc9_tMhj\",\"tutorials_intermediate_2_bayesiannn.md\":\"CbIRqYOG\",\"tutorials_intermediate_3_hypernet.md\":\"DDgovu1E\",\"tutorials_intermediate_4_pinn2dpde.md\":\"BeNVetWK\",\"tutorials_intermediate_5_convolutionalvae.md\":\"D_tlFE54\",\"tutorials_intermediate_6_gcn_cora.md\":\"CxS6828O\",\"tutorials_intermediate_7_realnvp.md\":\"D9cxihYC\"}");window.__VP_SITE_DATA__=JSON.parse("{\"lang\":\"en-US\",\"dir\":\"ltr\",\"title\":\"Lux.jl Docs\",\"description\":\"Documentation for LuxDL Repositories\",\"base\":\"/v1.6.0/\",\"head\":[],\"router\":{\"prefetchLinks\":true},\"appearance\":true,\"themeConfig\":{\"outline\":\"deep\",\"logo\":{\"light\":\"/lux-logo.svg\",\"dark\":\"/lux-logo-dark.svg\"},\"search\":{\"provider\":\"local\",\"options\":{\"detailedView\":true}},\"nav\":[{\"text\":\"Home\",\"link\":\"/\"},{\"text\":\"Getting Started\",\"link\":\"/introduction\"},{\"text\":\"Benchmarks\",\"link\":\"https://lux.csail.mit.edu/benchmarks/\"},{\"text\":\"Tutorials\",\"link\":\"/tutorials/\"},{\"text\":\"Manual\",\"link\":\"/manual/interface\"},{\"text\":\"API\",\"items\":[{\"text\":\"Lux\",\"items\":[{\"text\":\"Built-In Layers\",\"link\":\"/api/Lux/layers\"},{\"text\":\"Automatic Differentiation\",\"link\":\"/api/Lux/autodiff\"},{\"text\":\"Utilities\",\"link\":\"/api/Lux/utilities\"},{\"text\":\"Experimental\",\"link\":\"/api/Lux/contrib\"},{\"text\":\"InterOp\",\"link\":\"/api/Lux/interop\"},{\"text\":\"DistributedUtils\",\"link\":\"/api/Lux/distributed_utils\"}]},{\"text\":\"Accelerator Support\",\"items\":[{\"text\":\"MLDataDevices\",\"link\":\"/api/Accelerator_Support/MLDataDevices\"}]},{\"text\":\"NN Primitives\",\"items\":[{\"text\":\"LuxLib\",\"link\":\"/api/NN_Primitives/LuxLib\"},{\"text\":\"NNlib\",\"link\":\"/api/NN_Primitives/NNlib\"},{\"text\":\"Activation Functions\",\"link\":\"/api/NN_Primitives/ActivationFunctions\"}]},{\"text\":\"Building Blocks\",\"items\":[{\"text\":\"LuxCore\",\"link\":\"/api/Building_Blocks/LuxCore\"},{\"text\":\"WeightInitializers\",\"link\":\"/api/Building_Blocks/WeightInitializers\"}]},{\"text\":\"Testing Functionality\",\"items\":[{\"text\":\"LuxTestUtils\",\"link\":\"/api/Testing_Functionality/LuxTestUtils\"}]}]},{\"component\":\"VersionPicker\"}],\"sidebar\":{\"/introduction/\":{\"text\":\"Getting Started\",\"collapsed\":false,\"items\":[{\"text\":\"Introduction\",\"link\":\"/introduction\"},{\"text\":\"Overview\",\"link\":\"/introduction/overview\"},{\"text\":\"Resources\",\"link\":\"/introduction/resources\"},{\"text\":\"Updating to v1\",\"link\":\"/introduction/updating_to_v1\"},{\"text\":\"Citation\",\"link\":\"/introduction/citation\"}]},\"/tutorials/\":{\"text\":\"Tutorials\",\"collapsed\":false,\"items\":[{\"text\":\"Overview\",\"link\":\"/tutorials/\"},{\"text\":\"Beginner\",\"collapsed\":false,\"items\":[{\"text\":\"Julia & Lux for the Uninitiated\",\"link\":\"/tutorials/beginner/1_Basics\"},{\"text\":\"Fitting a Polynomial using MLP\",\"link\":\"/tutorials/beginner/2_PolynomialFitting\"},{\"text\":\"Training a Simple LSTM\",\"link\":\"/tutorials/beginner/3_SimpleRNN\"},{\"text\":\"MNIST Classification with SimpleChains\",\"link\":\"/tutorials/beginner/4_SimpleChains\"},{\"text\":\"Fitting with Optimization.jl\",\"link\":\"/tutorials/beginner/5_OptimizationIntegration\"}]},{\"text\":\"Intermediate\",\"collapsed\":false,\"items\":[{\"text\":\"MNIST Classification using Neural ODEs\",\"link\":\"/tutorials/intermediate/1_NeuralODE\"},{\"text\":\"Bayesian Neural Network\",\"link\":\"/tutorials/intermediate/2_BayesianNN\"},{\"text\":\"Training a HyperNetwork on MNIST and FashionMNIST\",\"link\":\"/tutorials/intermediate/3_HyperNet\"},{\"text\":\"Training a PINN on 2D PDE\",\"link\":\"/tutorials/intermediate/4_PINN2DPDE\"},{\"text\":\"Convolutional VAE for MNIST using Reactant\",\"link\":\"/tutorials/intermediate/5_ConvolutionalVAE\"},{\"text\":\"Graph Convolutional Network on Cora\",\"link\":\"/tutorials/intermediate/6_GCN_Cora\"},{\"text\":\"Normalizing Flows for Density Estimation\",\"link\":\"/tutorials/intermediate/7_RealNVP\"}]},{\"text\":\"Advanced\",\"collapsed\":false,\"items\":[{\"text\":\"Training a Neural ODE to Model Gravitational Waveforms\",\"link\":\"/tutorials/advanced/1_GravitationalWaveForm\"}]},{\"text\":\"Larger Models\",\"collapsed\":true,\"items\":[{\"text\":\"Training Image Classification Models on ImageNet with Distributed Data Parallel Training\",\"link\":\"https://github.com/LuxDL/Lux.jl/tree/main/examples/ImageNet\"},{\"text\":\"Training a DDIM (Diffusion Model) for Image Generation\",\"link\":\"https://github.com/LuxDL/Lux.jl/tree/main/examples/DDIM\"},{\"text\":\"Different Vision Models on CIFAR-10\",\"link\":\"https://github.com/LuxDL/Lux.jl/tree/main/examples/CIFAR10\"}]},{\"text\":\"3rd Party Tutorials\",\"collapsed\":true,\"items\":[{\"text\":\"PINNs (NeuralPDE.jl)\",\"link\":\"https://docs.sciml.ai/NeuralPDE/stable/tutorials/pdesystem/\"},{\"text\":\"UDEs (SciMLSensitivity.jl)\",\"link\":\"https://docs.sciml.ai/SciMLSensitivity/stable/tutorials/data_parallel/\"},{\"text\":\"Neural DEs (DiffEqFlux.jl)\",\"link\":\"https://docs.sciml.ai/DiffEqFlux/stable/examples/neural_ode/\"},{\"text\":\"DEQs (DeepEquilibriumNetworks.jl)\",\"link\":\"https://docs.sciml.ai/DeepEquilibriumNetworks/stable/tutorials/basic_mnist_deq/\"},{\"text\":\"Medical Image Segmentation\",\"link\":\"https://github.com/Dale-Black/ComputerVisionTutorials.jl/\"},{\"text\":\"Neural Closure Models\",\"link\":\"https://github.com/agdestein/NeuralClosureTutorials/\"}]}]},\"/manual/\":{\"text\":\"Manual\",\"collapsed\":false,\"items\":[{\"text\":\"Basics\",\"items\":[{\"text\":\"Lux Interface\",\"link\":\"/manual/interface\"},{\"text\":\"Freezing Parameters\",\"link\":\"/manual/freezing_model_parameters\"},{\"text\":\"GPU Management\",\"link\":\"/manual/gpu_management\"},{\"text\":\"Initializing Weights\",\"link\":\"/manual/weight_initializers\"}]},{\"text\":\"Reactant Compilation\",\"items\":[{\"text\":\"Compiling Lux Models\",\"link\":\"/manual/compiling_lux_models\"},{\"text\":\"Exporting Lux Models to Jax\",\"link\":\"/manual/exporting_to_jax\"}]},{\"text\":\"Automatic Differentiation\",\"items\":[{\"text\":\"Automatic Differentiation\",\"link\":\"/manual/autodiff\"},{\"text\":\"Nested AutoDiff\",\"link\":\"/manual/nested_autodiff\"}]},{\"text\":\"Debugging / Performance Enhancement Tools\",\"items\":[{\"text\":\"Debugging Lux Models\",\"link\":\"/manual/debugging\"},{\"text\":\"Performance Pitfalls\",\"link\":\"/manual/performance_pitfalls\"}]},{\"text\":\"Migration Guides\",\"items\":[{\"text\":\"Migrating from Flux\",\"link\":\"/manual/migrate_from_flux\"}]},{\"text\":\"Advanced Usage\",\"items\":[{\"text\":\"Custom Input Types\",\"link\":\"/manual/dispatch_custom_input\"},{\"text\":\"Configuration via Preferences\",\"link\":\"/manual/preferences\"},{\"text\":\"Distributed Training\",\"link\":\"/manual/distributed_utils\"}]}]},\"/api/\":{\"text\":\"API Reference\",\"collapsed\":false,\"items\":[{\"text\":\"Lux\",\"collapsed\":false,\"items\":[{\"text\":\"Built-In Layers\",\"link\":\"/api/Lux/layers\"},{\"text\":\"Automatic Differentiation\",\"link\":\"/api/Lux/autodiff\"},{\"text\":\"Utilities\",\"link\":\"/api/Lux/utilities\"},{\"text\":\"Experimental Features\",\"link\":\"/api/Lux/contrib\"},{\"text\":\"Interoperability\",\"link\":\"/api/Lux/interop\"},{\"text\":\"DistributedUtils\",\"link\":\"/api/Lux/distributed_utils\"}]},{\"text\":\"Accelerator Support\",\"collapsed\":false,\"items\":[{\"text\":\"MLDataDevices\",\"link\":\"/api/Accelerator_Support/MLDataDevices\"}]},{\"text\":\"NN Primitives\",\"collapsed\":false,\"items\":[{\"text\":\"LuxLib\",\"link\":\"/api/NN_Primitives/LuxLib\"},{\"text\":\"NNlib\",\"link\":\"/api/NN_Primitives/NNlib\"},{\"text\":\"Activation Functions\",\"link\":\"/api/NN_Primitives/ActivationFunctions\"}]},{\"text\":\"Building Blocks\",\"collapsed\":false,\"items\":[{\"text\":\"LuxCore\",\"link\":\"/api/Building_Blocks/LuxCore\"},{\"text\":\"WeightInitializers\",\"link\":\"/api/Building_Blocks/WeightInitializers\"}]},{\"text\":\"Testing Functionality\",\"collapsed\":false,\"items\":[{\"text\":\"LuxTestUtils\",\"link\":\"/api/Testing_Functionality/LuxTestUtils\"}]}]}},\"editLink\":{\"pattern\":\"https://github.com/LuxDL/Lux.jl/edit/main/docs/src/:path\",\"text\":\"Edit this page on GitHub\"},\"socialLinks\":[{\"icon\":\"github\",\"link\":\"https://github.com/LuxDL/Lux.jl\"},{\"icon\":\"twitter\",\"link\":\"https://twitter.com/avikpal1410\"},{\"icon\":\"slack\",\"link\":\"https://julialang.org/slack/\"}],\"footer\":{\"message\":\"Made with <a href=\\\"https://documenter.juliadocs.org/stable/\\\" target=\\\"_blank\\\"><strong>Documenter.jl</strong></a>, <a href=\\\"https://vitepress.dev\\\" target=\\\"_blank\\\"><strong>VitePress</strong></a> and <a href=\\\"https://luxdl.github.io/DocumenterVitepress.jl/stable\\\" target=\\\"_blank\\\"><strong>DocumenterVitepress.jl</strong></a><br>Released under the MIT License. Powered by the <a href=\\\"https://www.julialang.org\\\">Julia Programming Language</a>.<br>\",\"copyright\":\"© Copyright 2025 Avik Pal.\"},\"lastUpdated\":{\"text\":\"Updated at\",\"formatOptions\":{\"dateStyle\":\"full\",\"timeStyle\":\"medium\"}}},\"locales\":{},\"scrollOffset\":134,\"cleanUrls\":true}");</script>
30+
31+
</body>
32+
</html>

v1.6.0/api/Accelerator_Support/MLDataDevices.html

Lines changed: 61 additions & 0 deletions
Large diffs are not rendered by default.

v1.6.0/api/Building_Blocks/LuxCore.html

Lines changed: 35 additions & 0 deletions
Large diffs are not rendered by default.

v1.6.0/api/Building_Blocks/WeightInitializers.html

Lines changed: 86 additions & 0 deletions
Large diffs are not rendered by default.

v1.6.0/api/Lux/autodiff.html

Lines changed: 35 additions & 0 deletions
Large diffs are not rendered by default.

v1.6.0/api/Lux/contrib.html

Lines changed: 89 additions & 0 deletions
Large diffs are not rendered by default.

v1.6.0/api/Lux/distributed_utils.html

Lines changed: 38 additions & 0 deletions
Large diffs are not rendered by default.

0 commit comments

Comments
 (0)