-
Notifications
You must be signed in to change notification settings - Fork 213
/
Copy pathsb3_grid4x4.py
64 lines (47 loc) · 1.63 KB
/
sb3_grid4x4.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
import os
import shutil
import subprocess
import numpy as np
import supersuit as ss
import traci
from stable_baselines3 import PPO
from stable_baselines3.common.callbacks import EvalCallback
from stable_baselines3.common.evaluation import evaluate_policy
from stable_baselines3.common.vec_env import VecMonitor
from tqdm import trange
import sumo_rl
if __name__ == "__main__":
env = sumo_rl.grid4x4(use_gui=False, out_csv_name="outputs/grid4x4/ppo_train")
max_time = env.unwrapped.env.sim_max_time
delta_time = env.unwrapped.env.delta_time
print("Environment created")
env = ss.pettingzoo_env_to_vec_env_v1(env)
env = ss.concat_vec_envs_v1(env, 2, num_cpus=16, base_class="stable_baselines3")
env = VecMonitor(env)
model = PPO(
"MlpPolicy",
env,
verbose=3,
gamma=0.95,
learning_rate=0.00062211,
batch_size=256,
tensorboard_log="./logs/grid4x4/ppo_train",
)
print("Starting training")
model.learn(total_timesteps=50000)
print("Training finished. Starting evaluation")
mean_reward, std_reward = evaluate_policy(model, env, n_eval_episodes=1)
print(mean_reward)
print(std_reward)
model.save('ppo_output')
# Maximum number of steps before reset, +1 because I'm scared of OBOE
print("Starting rendering")
num_steps = (max_time // delta_time) + 1
obs = env.reset()
img = env.render()
for t in trange(num_steps):
actions, _ = model.predict(obs, state=None, deterministic=False)
obs, reward, done, info = env.step(actions)
env.render()
print("All done, cleaning up")
env.close()