-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathradarReader.py
499 lines (441 loc) · 21.1 KB
/
radarReader.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
import os
import datetime
import bz2
import numpy as np
import netCDF4 as nc
import wradlib.ipol as ipol
from functools import reduce
import imageio
import matplotlib.pyplot as plt
from radarVis import *
def MetSTARDataReader(dta_path):
variable_encode = {1: "dbt", 2: "dbz", 7: "zdr", 9: "cc", 10: "phidp", 11: "kdp"}
# [1] Read raw data produced by Beijing METSTAR radar Co.,LTD.
fid = open(dta_path, "rb")
# Shift value for file pointers of different block
# ---generic header block pointer (len=32)
pt_common_block = 0
# ---site configuration information block pointer (len=128)
pt_site_block = 0 + 32
# ---task configuration information block pointer (len=256)
pt_task_block = 0 + 32 + 128
# ---1st angle of elevation block pointer
# ------The shift value of N-th angle of elevation is: 416 + (N-1) * 256
pt_1st_ele = 0 + 32 + 128 + 256
siteinfo = {}
taskinfo = {}
eleinfo = {}
radinfo = {}
f = {'radinfo': {}, 'dbt': {}, 'dbz': {}, 'zdr': {}, 'cc': {}, 'phidp': {}, 'kdp': {}}
# ---read site configuration information
fid.seek(pt_site_block, 0)
# ------site code
siteinfo['code'] = ''.join([chr(item) for item in np.fromfile(file=fid, dtype=np.int8, count=8)])
# ------site name
siteinfo['name'] = ''.join([chr(item) for item in np.fromfile(fid, np.int8, 32)])
# ------latitude
siteinfo['lat'] = np.fromfile(fid, np.float32, 1)[0]
# ------longitude
siteinfo['lon'] = np.fromfile(fid, np.float32, 1)[0]
# ------antenna height
siteinfo['atennaasl'] = np.fromfile(fid, np.int32, 1)[0]
# ------ground height
siteinfo['baseasl'] = np.fromfile(fid, np.int32, 1)[0]
# ------frequency
siteinfo['freq'] = np.fromfile(fid, np.float32, 1)[0]
# ------beam width (Horizontal)
siteinfo['beamhwidth'] = np.fromfile(fid, np.float32, 1)[0]
# ------beam width (Vertical)
siteinfo['beamvwidth'] = np.fromfile(fid, np.float32, 1)[0]
# ---read task configuration information
fid.seek(pt_task_block, 0)
# ------task name
taskinfo['name'] = ''.join([chr(item) for item in np.fromfile(fid, np.int8, 32)])
# ------task description
taskinfo['description'] = ''.join([chr(item) for item in np.fromfile(fid, np.int8, 128)])
# ------polarization type
taskinfo['polmode'] = np.fromfile(fid, np.int32, 1)[0]
# ------scan type: 1 for Plan Position Indicator (PPI), 2 for Range Height Indicator (RHI)
taskinfo['scantype'] = np.fromfile(fid, np.int32, 1)[0]
# ------pulse width
taskinfo['pulsewidth'] = np.fromfile(fid, np.int32, 1)[0]
# ------!!! scan start time (UTC, start from 1970/01/01 00:00)
taskinfo['startime'] = np.fromfile(fid, np.int32, 1)[0]
# ------!!! cut number
taskinfo['cutnum'] = np.fromfile(fid, np.int32, 1)[0]
# ------horizontal noise
taskinfo['hnoise'] = np.fromfile(fid, np.float32, 1)[0]
# ------vertical noise
taskinfo['vnoise'] = np.fromfile(fid, np.float32, 1)[0]
# ------horizontal calibration
taskinfo['hsyscal'] = np.fromfile(fid, np.float32, 1)[0]
# ------vertical calibration
taskinfo['vsyscal'] = np.fromfile(fid, np.float32, 1)[0]
# ------horizontal noise temperature
taskinfo['hte'] = np.fromfile(fid, np.float32, 1)[0]
# ------vertical noise temperature
taskinfo['vte'] = np.fromfile(fid, np.float32, 1)[0]
# ------ZDR calibration
taskinfo['zdrbias'] = np.fromfile(fid, np.float32, 1)[0]
# ------PhiDP calibration
taskinfo['phasebias'] = np.fromfile(fid, np.float32, 1)[0]
# ------LDR calibration
taskinfo['ldrbias'] = np.fromfile(fid, np.float32, 1)[0]
# ---read angle of elevation block
for ct in range(1, int(taskinfo['cutnum']) + 1):
fid.seek(pt_1st_ele + (ct - 1) * 256, 0)
info_dict = {}
# ------process mode
info_dict['mode'] = np.fromfile(fid, np.int32, 1)[0]
# ------wave form
info_dict['waveform'] = np.fromfile(fid, np.int32, 1)[0]
# ------pulse repetition frequency 1 (PRF1)
info_dict['prf1'] = np.fromfile(fid, np.float32, 1)[0]
# ------pulse repetition frequency 2 (PRF2)
info_dict['prf2'] = np.fromfile(fid, np.float32, 1)[0]
# ------de-aliasing mode
info_dict['unfoldmode'] = np.fromfile(fid, np.int32, 1)[0]
# ------azimuth for RHI mode
info_dict['azi'] = np.fromfile(fid, np.float32, 1)[0]
# ------elevation for PPI mode
info_dict['ele'] = np.fromfile(fid, np.float32, 1)[0]
# ------start angle, i.e., start azimuth for PPI mode or highest elevation for RHI mode
info_dict['startangle'] = np.fromfile(fid, np.float32, 1)[0]
# ------end angle, i.e., end azimuth for PPI mode or lowest elevation for RHI mode
info_dict['endangle'] = np.fromfile(fid, np.float32, 1)[0]
# ------angular resolution (only for PPI mode)
info_dict['angleres'] = np.fromfile(fid, np.float32, 1)[0]
# ------scan speed
info_dict['scanspeed'] = np.fromfile(fid, np.float32, 1)[0]
# ------log resolution
info_dict['logres'] = np.fromfile(fid, np.int32, 1)[0]
# ------Doppler Resolution
info_dict['dopres'] = np.fromfile(fid, np.int32, 1)[0]
# ------Maximum Range corresponding to PRF1
info_dict['maxrange1'] = np.fromfile(fid, np.int32, 1)[0]
# ------Maximum Range corresponding to PRF2
info_dict['maxrange2'] = np.fromfile(fid, np.int32, 1)[0]
# ------start range
info_dict['startrange'] = np.fromfile(fid, np.int32, 1)[0]
# ------number of samples corresponding to PRF1
info_dict['samplenum1'] = np.fromfile(fid, np.int32, 1)[0]
# ------number of samples corresponding to PRF2
info_dict['samplenum2'] = np.fromfile(fid, np.int32, 1)[0]
# ------phase mode
info_dict['phasemode'] = np.fromfile(fid, np.int32, 1)[0]
# ------atmosphere loss
info_dict['atmosloss'] = np.fromfile(fid, np.float32, 1)[0]
# ------Nyquist speed
info_dict['vmax'] = np.fromfile(fid, np.float32, 1)[0]
# ------moments mask
info_dict['mask'] = np.fromfile(fid, np.int32, 1)[0]
# ------moments size mask
info_dict['masksize'] = np.fromfile(fid, np.float32, 1)[0]
info_dict['datasizemask'] = [mas for mas in np.fromfile(fid, np.float64, 64)]
# ------misc filter mask
info_dict['filtermask'] = np.fromfile(fid, np.int32, 1)[0]
# ------SQI threshold
info_dict['sqi'] = np.fromfile(fid, np.float32, 1)[0]
# ------SIG threshold
info_dict['sig'] = np.fromfile(fid, np.float32, 1)[0]
# ------CSR threshold
info_dict['csr'] = np.fromfile(fid, np.float32, 1)[0]
# ------LOG threshold
info_dict['log'] = np.fromfile(fid, np.float32, 1)[0]
# ------CPA threshold
info_dict['cpa'] = np.fromfile(fid, np.float32, 1)[0]
# ------PMI threshold
info_dict['pmi'] = np.fromfile(fid, np.float32, 1)[0]
# ------reserved threshold
info_dict['threshold'] = np.fromfile(fid, np.int8, 8)[0]
# ------dBT threshold
info_dict['dbtmask'] = np.fromfile(fid, np.int32, 1)[0]
# ------dBZ mask
info_dict['dbzmask'] = np.fromfile(fid, np.int32, 1)[0]
# ------velocity mask
info_dict['vmask'] = np.fromfile(fid, np.int32, 1)[0]
# ------spectrum width mask
info_dict['wmask'] = np.fromfile(fid, np.int32, 1)[0]
# ------DP mask
info_dict['zdrmask'] = np.fromfile(fid, np.int32, 1)[0]
# ------mask reserved
info_dict['maskreserved'] = np.fromfile(fid, np.int8, 12)
# ------flag for scan synchronization
info_dict['scansync'] = np.fromfile(fid, np.int32, 1)[0]
# ------scan direction
info_dict['scandirection'] = np.fromfile(fid, np.int32, 1)[0]
# ------ground clutter classifier type
info_dict['cmap'] = np.fromfile(fid, np.int16, 1)[0]
# ------ground clutter filter type
info_dict['cfiltertype'] = np.fromfile(fid, np.int16, 1)[0]
# ------ground clutter filter notch width
info_dict['cnotchwidth'] = np.fromfile(fid, np.int16, 1)[0]
# ------ground clutter filter window
info_dict['cfilterwin'] = np.fromfile(fid, np.int16, 1)[0]
# ------reserved
info_dict['twin'] = np.fromfile(fid, np.int8, 1)[0]
eleinfo[str(ct)] = info_dict
# ---read radial data block
pt_radial_block = pt_1st_ele + int(taskinfo['cutnum']) * 256
fid.seek(pt_radial_block, 0)
a = 0
# ------we have 12 angle of elevation
for i in range(1, 12):
radinfo[str(i)] = {}
# ------radial state
radinfo[str(i)]['state'] = []
# ------spot blank
radinfo[str(i)]['spotblank'] = []
# ------sequence number
radinfo[str(i)]['seqnum'] = []
# ------radial number
radinfo[str(i)]['curnum'] = []
# ------elevation number
radinfo[str(i)]['elenum'] = []
# ------azimuth
radinfo[str(i)]['azi'] = []
# ------elevation
radinfo[str(i)]['ele'] = []
# ------seconds
radinfo[str(i)]['sec'] = []
# ------microseconds
radinfo[str(i)]['micro'] = []
# ------length of data
radinfo[str(i)]['datalen'] = []
# ------moment number
radinfo[str(i)]['momnum'] = []
radinfo[str(i)]['reserved'] = []
for i in range(1, 12):
f['dbt'][i] = {}
f['dbz'][i] = {}
f['zdr'][i] = {}
f['cc'][i] = {}
f['phidp'][i] = {}
f['kdp'][i] = {}
while True:
# ------radial state
state = np.fromfile(fid, np.int32, 1)[0]
# ------spot blank
spotblank = np.fromfile(fid, np.int32, 1)[0]
# ------sequence number
seqnum = np.fromfile(fid, np.int32, 1)[0]
# ------radial number
curnum = np.fromfile(fid, np.int32, 1)[0]
# ------elevation number
elenum = np.fromfile(fid, np.int32, 1)[0]
radinfo[str(int(elenum))]['state'].append(state)
radinfo[str(int(elenum))]['spotblank'].append(spotblank)
radinfo[str(int(elenum))]['seqnum'].append(seqnum)
radinfo[str(int(elenum))]['curnum'].append(curnum)
radinfo[str(int(elenum))]['elenum'].append(elenum)
# ------azimuth
radinfo[str(int(elenum))]['azi'].append(np.fromfile(fid, np.float32, 1)[0])
# ------elevation
radinfo[str(int(elenum))]['ele'].append(np.fromfile(fid, np.float32, 1)[0])
# ------seconds
radinfo[str(int(elenum))]['sec'].append(np.fromfile(fid, np.int32, 1)[0])
# ------microseconds
radinfo[str(int(elenum))]['micro'].append(np.fromfile(fid, np.int32, 1)[0])
# ------length of data
datalen = np.fromfile(fid, np.int32, 1)[0]
radinfo[str(int(elenum))]['datalen'].append(datalen)
# ------moment number
num_moment = np.fromfile(fid, np.int32, 1)[0]
radinfo[str(int(elenum))]['momnum'].append(num_moment)
radinfo[str(int(elenum))]['reserved'].append(np.fromfile(fid, np.int8, 20))
radcnt = curnum
b = 0
for n in range(0, num_moment):
# ------data type
var_type = np.fromfile(fid, np.int32, 1)[0]
# ------scale
scale = np.fromfile(fid, np.int32, 1)[0]
# ------offset
offset = np.fromfile(fid, np.int32, 1)[0]
# ------!!! bin length: bytes for one bin storage
binbytenum = np.fromfile(fid, np.int16, 1)[0]
# ------flags
flag = np.fromfile(fid, np.int16, 1)[0]
# ------length
bin_length = np.fromfile(fid, np.int32, 1)[0]
reserved = np.fromfile(fid, np.int8, 12)
bin_num = bin_length / binbytenum
if binbytenum == 1:
data_raw = np.fromfile(fid, np.uint8, int(bin_num))
else:
data_raw = np.fromfile(fid, np.uint16, int(bin_num))
b += 1
if elenum != 2 and elenum != 4:
if var_type in variable_encode.keys():
# Note: When operated between unsigned int8 and int32, numpy might give some mis-conversion
f[variable_encode[var_type]][int(elenum)][str(int(radcnt))] = (1.0 * data_raw - offset) / scale
a += 1
if state == 6 or state == 4:
break
return siteinfo, taskinfo, eleinfo, radinfo, f
def DROPsNetCDFGen(nc_name, siteinfo, taskinfo, eleinfo, radinfo, radar_data, num_gate=1000, elev_id=3):
nc_ds = nc.Dataset(nc_name, mode="w")
elev_id = str(elev_id)
nc_ds.NetCDFRevision = "lyy_data"
nc_ds.GenDate = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
nc_ds.RadarName = siteinfo['name']
nc_ds.Latitude = siteinfo['lat']
nc_ds.Longitude = siteinfo['lon']
nc_ds.Height = siteinfo['atennaasl']
nc_ds.NumGates = num_gate
nc_ds.ScanId = 3
nc_ds.ScanFlag = 1
nc_ds.ScanType = taskinfo['scantype']
nc_ds.AntennaGain = 44.7
nc_ds.AntennaBeamwidth = 0.94
num_rad = len(radinfo[elev_id]['azi'])
RadDimId = nc_ds.createDimension("Radial", num_rad)
GatDimId = nc_ds.createDimension("Gate", num_gate)
az_id = nc_ds.createVariable("Azimuth", np.float64, ("Radial",))
az_id.Units = "Degrees"
az_id[:] = radinfo[elev_id]['azi']
el_id = nc_ds.createVariable("Elevation", np.float64, ("Radial",))
el_id.Units = "Degrees"
el_id[:] = radinfo[elev_id]['ele']
gw_id = nc_ds.createVariable("GateWidth", np.float64, ("Radial",))
gw_id.Units = "Millimeters"
gw_id[:] = np.full(num_rad, eleinfo[elev_id]['logres'] * 1000)
str_id = nc_ds.createVariable("StartRange", np.float64, ("Radial",))
str_id.Units = "Millimeters"
str_id[:] = np.full(num_rad, eleinfo[elev_id]['startrange'] * 1000000)
t_id = nc_ds.createVariable("Time", np.int64, ("Radial",))
t_id.Units = "Seconds"
t_id[:] = radinfo[elev_id]['sec']
tf_id = nc_ds.createVariable("TxFrequency", np.float64, ("Radial",))
tf_id.Units = "Hertz"
tf_id[:] = np.full(num_rad, siteinfo['freq'] * 1000000)
zh_id = nc_ds.createVariable("Reflectivity", np.float32, ("Radial", "Gate"))
zh_id.Units = "dBz"
zh_id[:, :] = np.array(
[v[0:num_gate] for k, v in sorted(radar_data['dbz'][int(elev_id)].items(), key=lambda item: int(item[0]))])
zd_id = nc_ds.createVariable("DifferentialReflectivity", np.float32, ("Radial", "Gate"))
zd_id.Units = "dB"
zd_id[:, :] = np.array(
[v[0:num_gate] for k, v in sorted(radar_data['zdr'][int(elev_id)].items(), key=lambda item: int(item[0]))])
phiDP_id = nc_ds.createVariable("DifferentialPhase", np.float32, ("Radial", "Gate"))
phiDP_id.Units = "Degrees"
phiDP_id[:, :] = np.array(
[v[0:num_gate] for k, v in sorted(radar_data['phidp'][int(elev_id)].items(), key=lambda item: int(item[0]))])
rhoHV_id = nc_ds.createVariable("CrossPolCorrelation", np.float32, ("Radial", "Gate"))
rhoHV_id.Units = "Unitless"
rhoHV_id[:, :] = np.array(
[v[0:num_gate] for k, v in sorted(radar_data['cc'][int(elev_id)].items(), key=lambda item: int(item[0]))])
snr_id = nc_ds.createVariable("KDP", np.float32, ("Radial", "Gate"))
snr_id.Units = "Unitless"
snr_id[:, :] = np.array(
[v[0:num_gate] for k, v in sorted(radar_data['kdp'][int(elev_id)].items(), key=lambda item: int(item[0]))])
nc_ds.close()
def getRadarDataByExtent(radar_nc_path, save_path, extent):
x_min, x_max, y_min, y_max = extent
scale = 111.194925
nc_ds = nc.Dataset(radar_nc_path, "r")
lon = nc_ds.Longitude
lat = nc_ds.Latitude
zDr = np.array(nc_ds.variables["DifferentialReflectivity"])
Phi_dp = np.array(nc_ds.variables["DifferentialPhase"])
KDP = np.array(nc_ds.variables["KDP"])
reflectivity = np.array(nc_ds.variables["Reflectivity"])
'''
zDr_loc = np.where(zDr.flatten() != -8.125)[0]
reflect_loc = np.where(reflectivity.flatten() != -33.0)[0]
Kdp_loc = np.where(KDP.flatten() != -5.0)[0]
sample_loc = reduce(np.union1d, (zDr_loc, reflect_loc, Kdp_loc))
'''
# ------convert mm to m
GateWidth = np.array(nc_ds.variables["GateWidth"]) / 1000.0
w_r = GateWidth[0] / scale / 1000.0
dis_cum = np.cumsum(np.full(Phi_dp.shape[1], w_r))
# ---Determine the center coordinates of observed radar data
azimuth = np.array(nc_ds.variables["Azimuth"]) * np.pi / 180.0
x_obs_loc = lon + np.outer(np.cos(azimuth), dis_cum)
y_obs_loc = lat + np.outer(np.sin(azimuth), dis_cum)
xy_obs_loc = np.concatenate((np.reshape(x_obs_loc.flatten(), (-1, 1)), np.reshape(y_obs_loc.flatten(), (-1, 1))),
axis=1)
# xy_obs_loc = xy_obs_loc[sample_loc]
# ---Determine the center coordinates of cells which are to be interpolated
num_row = int(np.ceil((y_max - y_min) / w_r))
num_col = int(np.ceil((x_max - x_min) / w_r))
x_center_loc = np.linspace(x_min, x_min + (num_col - 1) * w_r, num_col) + 0.5 * w_r
y_center_loc = np.linspace(y_max - (num_row - 1) * w_r, y_max, num_row) - 0.5 * w_r
x_center_loc, y_center_loc = np.meshgrid(x_center_loc, y_center_loc)
xy_center_loc = np.concatenate(
(np.reshape(x_center_loc.flatten(), (-1, 1)), np.reshape(y_center_loc.flatten(), (-1, 1))), axis=1)
# ---construct an Interpolation Object
interp_obj = ipol.Nearest(xy_obs_loc, xy_center_loc)
# zH_interploate = OrdinaryKriging_obj(reflectivity.flatten()[sample_loc])
zH_interploate = interp_obj(reflectivity.flatten())
zH_interploate = np.reshape(zH_interploate, (num_row, num_col))
# zDr_interploate = OrdinaryKriging_obj(zDr.flatten()[sample_loc])
zDr_interploate = interp_obj(zDr.flatten())
zDr_interploate = np.reshape(zDr_interploate, (num_row, num_col))
# Kdp_interploate = OrdinaryKriging_obj(KDP.flatten()[sample_loc])
Kdp_interploate = interp_obj(KDP.flatten())
Kdp_interploate = np.reshape(Kdp_interploate, (num_row, num_col))
# ---save the output .nc file
output_ds = nc.Dataset(save_path, mode="w")
output_ds.NetCDFRevision = "lyy_thu_data"
output_ds.GenDate = datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
output_ds.num_col = num_col
output_ds.num_row = num_row
output_ds.Resolution = w_r
output_ds.X_min = x_min
output_ds.Y_max = y_max
RowDimId = output_ds.createDimension("row", num_row)
ColDimId = output_ds.createDimension("col", num_col)
zh_id = output_ds.createVariable("Reflectivity", np.float64, ("row", "col"))
zh_id.Units = "dBz"
zh_id[:, :] = zH_interploate
zdr_id = output_ds.createVariable("DifferentialReflectivity", np.float64, ("row", "col"))
zdr_id.Units = "dB"
zdr_id[:, :] = zDr_interploate
kdp_id = output_ds.createVariable("KDP", np.float64, ("row", "col"))
kdp_id.Units = "unitless"
kdp_id[:, :] = Kdp_interploate
output_ds.close()
nc_ds.close()
def exportToPNG(nc_dir, export_dir, field="Reflectivity", scale=1.0):
nc_list = sorted([f for f in os.listdir(nc_dir) if f.endswith("nc")])
for f in nc_list:
nc_ds = nc.Dataset(os.path.join(nc_dir, f), "r")
zH = np.array(nc_ds.variables[field]) * scale
d = f.split("_")[1]
t = f.split("_")[2]
obs_time = datetime.datetime.strptime(d + " " + t, "%Y%m%d %H%M%S")
obs_title = "$Z_{H}$(dBZ) at " + obs_time.strftime("%Y/%m/%d %H:%M:%S")
plot_ZH(zH, os.path.join(export_dir, "THU_" + d + "_" + t + ".png"), title=obs_title)
nc_ds.close()
def PNGToGIF(png_dir, save_path):
images = [f for f in os.listdir(png_dir) if f.endswith(".png")]
images = sorted(images)
with imageio.get_writer(save_path, mode="I", duration=0.3) as writer:
for i in images:
im = imageio.imread(os.path.join(png_dir, i))
writer.append_data(im)
if __name__ == "__main__":
'''
# [1] Radar Raw Data -> NetCDF Dataset (batch processing)
dta_dir = "*******Write Your Directory of Radar Raw Data which ends with .AR2 Here*******"
for f in os.listdir(dta_dir):
if f.endswith(".AR2"):
num_gate = 1000
elev_id = 3
newNetCDFFile = "_".join(f.split(".")[:-1]) + "_" + str(elev_id) + "_" + str(num_gate) + ".nc"
newNetCDFFile = os.path.join("Temp", newNetCDFFile)
site, task, elev, rad, data_pol = MetSTARDataReader(os.path.join(dta_dir, f))
DROPsNetCDFGen(newNetCDFFile, site, task, elev, rad, data_pol, num_gate=num_gate, elev_id=elev_id)
'''
'''
# [2] NetCDF Dataset after Quality Control -> NetCDF Dataset cliped by a specified bounding box (batch processing)
for f in os.listdir("Temp"):
if f.startswith("QC"):
station_name = f.split("_")[1]
d = f.split("_")[2]
t = f.split("_")[3]
save_path = os.path.join("Temp_Output", "THU_"+d+"_"+t+"_"+station_name+".nc")
getRadarDataByExtent(radar_nc_path=os.path.join("Temp", f), save_path=save_path, extent=[116.297059, 116.344256, 39.983916, 40.020212])
'''