-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathtrain_process.py
149 lines (127 loc) · 7.25 KB
/
train_process.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
"""
Name: train_process
Date: 2022/4/11 上午10:26
Version: 1.0
"""
import torch
# from transformers import AdamW
from torch.optim import Adam, AdamW, SGD
from tqdm import tqdm, trange
from sklearn.metrics import accuracy_score, f1_score, recall_score, precision_score
from util.write_file import WriteFile
import dev_process
import numpy as np
from torch.utils.tensorboard import SummaryWriter
from model import ModelParam
# import tensorflow as tf
def train_process(opt, train_loader, dev_loader, test_loader, cl_model, critertion, log_summary_writer:SummaryWriter=None, tokenizer=None, image_id_list=None):
optimizer = None
pre_train_model_param = [name for name, param in cl_model.named_parameters() if 'text_model' in name]
optimizer_grouped_parameters = [
{
"params": [p for n, p in cl_model.named_parameters() if n in pre_train_model_param],
"lr": 0,
},
{
"params": [p for n, p in cl_model.named_parameters() if n not in pre_train_model_param],
"lr": opt.fuse_lr,
},
]
if opt.optim == 'adam':
optimizer = Adam(optimizer_grouped_parameters, betas=(opt.optim_b1, opt.optim_b2))
elif opt.optim == 'adamw':
optimizer = AdamW(optimizer_grouped_parameters, betas=(opt.optim_b1, opt.optim_b2))
elif opt.optim == 'sgd':
optimizer = SGD(optimizer_grouped_parameters, momentum=opt.momentum)
orgin_param = ModelParam()
augment_param = ModelParam()
last_F1 = 0
last_Accuracy = 0
for epoch in trange(opt.epoch, desc='Epoch:'):
y_true = []
y_pre = []
run_loss = 0
total_labels = 0
cl_model.train()
cl_model.zero_grad()
if epoch >= opt.train_fuse_model_epoch:
optimizer.param_groups[0]['lr'] = opt.lr
optimizer.param_groups[1]['lr'] = opt.lr
train_loader_tqdm = tqdm(train_loader, desc='Train Iteration:')
epoch_step_num = epoch * train_loader_tqdm.total
step_num = 0
for index, data in enumerate(train_loader_tqdm):
texts_origin, bert_attention_mask, image_origin, text_image_mask, labels,\
texts_augment, bert_attention_mask_augment, image_augment, text_image_mask_augment, target_labels = data
if opt.cuda is True:
texts_origin = texts_origin.cuda()
bert_attention_mask = bert_attention_mask.cuda()
image_origin = image_origin.cuda()
text_image_mask = text_image_mask.cuda()
labels = labels.cuda()
texts_augment = texts_augment.cuda()
bert_attention_mask_augment = bert_attention_mask_augment.cuda()
image_augment = image_augment.cuda()
text_image_mask_augment = text_image_mask_augment.cuda()
for i in range(len(target_labels)):
target_labels[i] = target_labels[i].cuda()
orgin_param.set_data_param(texts=texts_origin, bert_attention_mask=bert_attention_mask, images=image_origin, text_image_mask=text_image_mask)
augment_param.set_data_param(texts=texts_augment, bert_attention_mask=bert_attention_mask_augment, images=image_augment, text_image_mask=text_image_mask_augment)
origin_res, l_pos_neg, cl_lables, cl_self_loss = cl_model(orgin_param, augment_param, labels, target_labels)
classify_loss = critertion(origin_res, labels)
cl_loss = critertion(l_pos_neg, cl_lables)
loss = (classify_loss + cl_loss * opt.cl_loss_alpha + cl_self_loss * opt.cl_self_loss_alpha) / opt.acc_batch_size
loss.backward()
train_loader_tqdm.set_description("Train Iteration, loss: %.6f, lr: %e" %
(loss, optimizer.param_groups[0]['lr']))
if (index + 1) % opt.acc_grad == 0:
if log_summary_writer:
log_summary_writer.add_scalar('train_info/loss', loss.item(), global_step=step_num + epoch_step_num)
log_summary_writer.add_scalar('train_info/classify_loss', classify_loss.item(), global_step=step_num + epoch_step_num)
log_summary_writer.add_scalar('train_info/cl_loss', cl_loss.item(), global_step=step_num + epoch_step_num)
log_summary_writer.add_scalar('train_info/cl_self_loss', cl_self_loss.item(), global_step=step_num + epoch_step_num)
log_summary_writer.add_scalar('train_info/lr', optimizer.param_groups[0]['lr'], global_step=step_num + epoch_step_num)
log_summary_writer.add_scalar('train_info/fuse_lr', optimizer.param_groups[1]['lr'], global_step=step_num + epoch_step_num)
optimizer.step()
optimizer.zero_grad()
step_num += 1
_, predicted = torch.max(origin_res, 1)
y_true.extend(labels.cpu())
y_pre.extend(predicted.cpu())
run_loss += loss.item()
total_labels += labels.size(0)
run_loss /= total_labels
y_true = np.array(y_true)
y_pre = np.array(y_pre)
train_accuracy = accuracy_score(y_true, y_pre)
train_F1_weighted = f1_score(y_true, y_pre, average='weighted')
train_R_weighted = recall_score(y_true, y_pre, average='weighted')
train_precision_weighted = precision_score(y_true, y_pre, average='weighted')
train_F1 = f1_score(y_true, y_pre, average='macro')
train_R = recall_score(y_true, y_pre, average='macro')
train_precision = precision_score(y_true, y_pre, average='macro')
save_content = 'Epoch: %d:\nTrain: Accuracy: %.6f, F1(weighted): %.6f, Precision(weighted): %.6f, R(weighted): %.6f, F1(macro): %.6f, Precision: %.6f, R: %.6f, loss: %.6f' % \
(epoch, train_accuracy, train_F1_weighted, train_precision_weighted, train_R_weighted, train_F1, train_precision, train_R, run_loss)
WriteFile(opt.save_model_path, 'train_correct_log.txt', save_content + '\n', 'a+')
print(save_content, ' ' * 200)
if log_summary_writer:
log_summary_writer.add_scalar('train_info/loss_epoch', run_loss, global_step=epoch)
log_summary_writer.add_scalar('train_info/acc', train_accuracy, global_step=epoch)
log_summary_writer.add_scalar('train_info/f1_w', train_F1_weighted, global_step=epoch)
log_summary_writer.add_scalar('train_info/r_w', train_R_weighted, global_step=epoch)
log_summary_writer.add_scalar('train_info/p_w', train_precision_weighted, global_step=epoch)
log_summary_writer.add_scalar('train_info/f1_ma', train_F1, global_step=epoch)
log_summary_writer.flush()
train_log = {
"epoch": epoch,
"train_accuracy": train_accuracy,
"train_F1": train_F1,
"train_R": train_R,
"train_precision": train_precision,
"train_F1_weighted": train_F1_weighted,
"train_precision_weighted": train_precision_weighted,
"train_R_weighted": train_R_weighted,
"run_loss": run_loss
}
# debug:正常运行不要把下面的代码注释掉
last_F1, last_Accuracy = dev_process.dev_process(opt, critertion, cl_model, dev_loader, test_loader, last_F1, last_Accuracy, train_log, log_summary_writer)