27
27
# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28
28
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29
29
30
- def nvidia_resnet50 (pretrained = True , ** kwargs ):
31
- """Constructs a ResNet50 model.
32
- For detailed information on model input and output, training recipies, inference and performance
33
- visit: github.com/NVIDIA/DeepLearningExamples and/or ngc.nvidia.com
34
- Args:
35
- pretrained (bool, True): If True, returns a model pretrained on IMAGENET dataset.
36
- """
37
-
38
- from . import resnet50
39
-
40
- return resnet50 (pretrained = pretrained )
41
-
42
30
def nvidia_efficientnet (type = 'efficient-b0' , pretrained = True , ** kwargs ):
43
31
"""Constructs a EfficientNet model.
44
32
For detailed information on model input and output, training recipies, inference and performance
@@ -51,17 +39,6 @@ def nvidia_efficientnet(type='efficient-b0', pretrained=True, **kwargs):
51
39
52
40
return _ce (type )(pretrained = pretrained , ** kwargs )
53
41
54
- def nvidia_resneXt (pretrained = True , ** kwargs ):
55
- """Constructs a ResNeXt model.
56
- For detailed information on model input and output, training recipies, inference and performance
57
- visit: github.com/NVIDIA/DeepLearningExamples and/or ngc.nvidia.com
58
- Args:
59
- pretrained (bool, True): If True, returns a model pretrained on IMAGENET dataset.
60
- """
61
-
62
- from . import resnext101_32x4d
63
-
64
- return resnext101_32x4d (pretrained = pretrained )
65
42
66
43
def nvidia_convnets_processing_utils ():
67
44
import numpy as np
@@ -135,4 +112,4 @@ def get_imgnet_classes():
135
112
136
113
return imgnet_classes
137
114
138
- return Processing ()
115
+ return Processing ()
0 commit comments