Skip to content

Commit b545a3a

Browse files
committed
fix default vals for functional forms
1 parent 95906cc commit b545a3a

File tree

5 files changed

+38
-38
lines changed

5 files changed

+38
-38
lines changed

Diff for: src/torchmetrics/functional/classification/hamming.py

+5-5
Original file line numberDiff line numberDiff line change
@@ -163,7 +163,7 @@ def multiclass_hamming_distance(
163163
preds: Tensor,
164164
target: Tensor,
165165
num_classes: int,
166-
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
166+
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
167167
top_k: int = 1,
168168
multidim_average: Literal["global", "samplewise"] = "global",
169169
ignore_index: Optional[int] = None,
@@ -231,7 +231,7 @@ def multiclass_hamming_distance(
231231
>>> target = tensor([2, 1, 0, 0])
232232
>>> preds = tensor([2, 1, 0, 1])
233233
>>> multiclass_hamming_distance(preds, target, num_classes=3)
234-
tensor(0.1667)
234+
tensor(0.2500)
235235
>>> multiclass_hamming_distance(preds, target, num_classes=3, average=None)
236236
tensor([0.5000, 0.0000, 0.0000])
237237
@@ -243,7 +243,7 @@ def multiclass_hamming_distance(
243243
... [0.71, 0.09, 0.20],
244244
... [0.05, 0.82, 0.13]])
245245
>>> multiclass_hamming_distance(preds, target, num_classes=3)
246-
tensor(0.1667)
246+
tensor(0.2500)
247247
>>> multiclass_hamming_distance(preds, target, num_classes=3, average=None)
248248
tensor([0.5000, 0.0000, 0.0000])
249249
@@ -252,7 +252,7 @@ def multiclass_hamming_distance(
252252
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]])
253253
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]])
254254
>>> multiclass_hamming_distance(preds, target, num_classes=3, multidim_average='samplewise')
255-
tensor([0.5000, 0.7222])
255+
tensor([0.5000, 0.6667])
256256
>>> multiclass_hamming_distance(preds, target, num_classes=3, multidim_average='samplewise', average=None)
257257
tensor([[0.0000, 1.0000, 0.5000],
258258
[1.0000, 0.6667, 0.5000]])
@@ -273,7 +273,7 @@ def multilabel_hamming_distance(
273273
target: Tensor,
274274
num_labels: int,
275275
threshold: float = 0.5,
276-
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
276+
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
277277
multidim_average: Literal["global", "samplewise"] = "global",
278278
ignore_index: Optional[int] = None,
279279
validate_args: bool = True,

Diff for: src/torchmetrics/functional/classification/negative_predictive_value.py

+8-8
Original file line numberDiff line numberDiff line change
@@ -139,7 +139,7 @@ def multiclass_negative_predictive_value(
139139
preds: Tensor,
140140
target: Tensor,
141141
num_classes: int,
142-
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
142+
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
143143
top_k: int = 1,
144144
multidim_average: Literal["global", "samplewise"] = "global",
145145
ignore_index: Optional[int] = None,
@@ -208,7 +208,7 @@ def multiclass_negative_predictive_value(
208208
>>> target = tensor([2, 1, 0, 0])
209209
>>> preds = tensor([2, 1, 0, 1])
210210
>>> multiclass_negative_predictive_value(preds, target, num_classes=3)
211-
tensor(0.8889)
211+
tensor(0.8750)
212212
>>> multiclass_negative_predictive_value(preds, target, num_classes=3, average=None)
213213
tensor([0.6667, 1.0000, 1.0000])
214214
@@ -220,7 +220,7 @@ def multiclass_negative_predictive_value(
220220
... [0.71, 0.09, 0.20],
221221
... [0.05, 0.82, 0.13]])
222222
>>> multiclass_negative_predictive_value(preds, target, num_classes=3)
223-
tensor(0.8889)
223+
tensor(0.8750)
224224
>>> multiclass_negative_predictive_value(preds, target, num_classes=3, average=None)
225225
tensor([0.6667, 1.0000, 1.0000])
226226
@@ -229,7 +229,7 @@ def multiclass_negative_predictive_value(
229229
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]])
230230
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]])
231231
>>> multiclass_negative_predictive_value(preds, target, num_classes=3, multidim_average='samplewise')
232-
tensor([0.7833, 0.6556])
232+
tensor([0.7500, 0.6667])
233233
>>> multiclass_negative_predictive_value(
234234
... preds, target, num_classes=3, multidim_average='samplewise', average=None
235235
... )
@@ -254,7 +254,7 @@ def multilabel_negative_predictive_value(
254254
target: Tensor,
255255
num_labels: int,
256256
threshold: float = 0.5,
257-
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
257+
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
258258
multidim_average: Literal["global", "samplewise"] = "global",
259259
ignore_index: Optional[int] = None,
260260
validate_args: bool = True,
@@ -320,7 +320,7 @@ def multilabel_negative_predictive_value(
320320
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
321321
>>> preds = tensor([[0, 0, 1], [1, 0, 1]])
322322
>>> multilabel_negative_predictive_value(preds, target, num_labels=3)
323-
tensor(0.5000)
323+
tensor(0.6667)
324324
>>> multilabel_negative_predictive_value(preds, target, num_labels=3, average=None)
325325
tensor([1.0000, 0.5000, 0.0000])
326326
@@ -329,7 +329,7 @@ def multilabel_negative_predictive_value(
329329
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
330330
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]])
331331
>>> multilabel_negative_predictive_value(preds, target, num_labels=3)
332-
tensor(0.5000)
332+
tensor(0.6667)
333333
>>> multilabel_negative_predictive_value(preds, target, num_labels=3, average=None)
334334
tensor([1.0000, 0.5000, 0.0000])
335335
@@ -339,7 +339,7 @@ def multilabel_negative_predictive_value(
339339
>>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]],
340340
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]])
341341
>>> multilabel_negative_predictive_value(preds, target, num_labels=3, multidim_average='samplewise')
342-
tensor([0.0000, 0.1667])
342+
tensor([0.0000, 0.2500])
343343
>>> multilabel_negative_predictive_value(
344344
... preds, target, num_labels=3, multidim_average='samplewise', average=None
345345
... )

Diff for: src/torchmetrics/functional/classification/precision_recall.py

+13-13
Original file line numberDiff line numberDiff line change
@@ -141,7 +141,7 @@ def multiclass_precision(
141141
preds: Tensor,
142142
target: Tensor,
143143
num_classes: int,
144-
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
144+
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
145145
top_k: int = 1,
146146
multidim_average: Literal["global", "samplewise"] = "global",
147147
ignore_index: Optional[int] = None,
@@ -209,7 +209,7 @@ def multiclass_precision(
209209
>>> target = tensor([2, 1, 0, 0])
210210
>>> preds = tensor([2, 1, 0, 1])
211211
>>> multiclass_precision(preds, target, num_classes=3)
212-
tensor(0.8333)
212+
tensor(0.7500)
213213
>>> multiclass_precision(preds, target, num_classes=3, average=None)
214214
tensor([1.0000, 0.5000, 1.0000])
215215
@@ -221,7 +221,7 @@ def multiclass_precision(
221221
... [0.71, 0.09, 0.20],
222222
... [0.05, 0.82, 0.13]])
223223
>>> multiclass_precision(preds, target, num_classes=3)
224-
tensor(0.8333)
224+
tensor(0.7500)
225225
>>> multiclass_precision(preds, target, num_classes=3, average=None)
226226
tensor([1.0000, 0.5000, 1.0000])
227227
@@ -230,7 +230,7 @@ def multiclass_precision(
230230
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]])
231231
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]])
232232
>>> multiclass_precision(preds, target, num_classes=3, multidim_average='samplewise')
233-
tensor([0.3889, 0.2778])
233+
tensor([0.5000, 0.3333])
234234
>>> multiclass_precision(preds, target, num_classes=3, multidim_average='samplewise', average=None)
235235
tensor([[0.6667, 0.0000, 0.5000],
236236
[0.0000, 0.5000, 0.3333]])
@@ -261,7 +261,7 @@ def multilabel_precision(
261261
target: Tensor,
262262
num_labels: int,
263263
threshold: float = 0.5,
264-
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
264+
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
265265
multidim_average: Literal["global", "samplewise"] = "global",
266266
ignore_index: Optional[int] = None,
267267
validate_args: bool = True,
@@ -326,7 +326,7 @@ def multilabel_precision(
326326
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
327327
>>> preds = tensor([[0, 0, 1], [1, 0, 1]])
328328
>>> multilabel_precision(preds, target, num_labels=3)
329-
tensor(0.5000)
329+
tensor(0.6667)
330330
>>> multilabel_precision(preds, target, num_labels=3, average=None)
331331
tensor([1.0000, 0.0000, 0.5000])
332332
@@ -335,7 +335,7 @@ def multilabel_precision(
335335
>>> target = tensor([[0, 1, 0], [1, 0, 1]])
336336
>>> preds = tensor([[0.11, 0.22, 0.84], [0.73, 0.33, 0.92]])
337337
>>> multilabel_precision(preds, target, num_labels=3)
338-
tensor(0.5000)
338+
tensor(0.6667)
339339
>>> multilabel_precision(preds, target, num_labels=3, average=None)
340340
tensor([1.0000, 0.0000, 0.5000])
341341
@@ -345,7 +345,7 @@ def multilabel_precision(
345345
>>> preds = tensor([[[0.59, 0.91], [0.91, 0.99], [0.63, 0.04]],
346346
... [[0.38, 0.04], [0.86, 0.780], [0.45, 0.37]]])
347347
>>> multilabel_precision(preds, target, num_labels=3, multidim_average='samplewise')
348-
tensor([0.3333, 0.0000])
348+
tensor([0.4000, 0.0000])
349349
>>> multilabel_precision(preds, target, num_labels=3, multidim_average='samplewise', average=None)
350350
tensor([[0.5000, 0.5000, 0.0000],
351351
[0.0000, 0.0000, 0.0000]])
@@ -451,7 +451,7 @@ def multiclass_recall(
451451
preds: Tensor,
452452
target: Tensor,
453453
num_classes: int,
454-
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
454+
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
455455
top_k: int = 1,
456456
multidim_average: Literal["global", "samplewise"] = "global",
457457
ignore_index: Optional[int] = None,
@@ -519,7 +519,7 @@ def multiclass_recall(
519519
>>> target = tensor([2, 1, 0, 0])
520520
>>> preds = tensor([2, 1, 0, 1])
521521
>>> multiclass_recall(preds, target, num_classes=3)
522-
tensor(0.8333)
522+
tensor(0.7500)
523523
>>> multiclass_recall(preds, target, num_classes=3, average=None)
524524
tensor([0.5000, 1.0000, 1.0000])
525525
@@ -531,7 +531,7 @@ def multiclass_recall(
531531
... [0.71, 0.09, 0.20],
532532
... [0.05, 0.82, 0.13]])
533533
>>> multiclass_recall(preds, target, num_classes=3)
534-
tensor(0.8333)
534+
tensor(0.7500)
535535
>>> multiclass_recall(preds, target, num_classes=3, average=None)
536536
tensor([0.5000, 1.0000, 1.0000])
537537
@@ -540,7 +540,7 @@ def multiclass_recall(
540540
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]])
541541
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]])
542542
>>> multiclass_recall(preds, target, num_classes=3, multidim_average='samplewise')
543-
tensor([0.5000, 0.2778])
543+
tensor([0.5000, 0.3333])
544544
>>> multiclass_recall(preds, target, num_classes=3, multidim_average='samplewise', average=None)
545545
tensor([[1.0000, 0.0000, 0.5000],
546546
[0.0000, 0.3333, 0.5000]])
@@ -571,7 +571,7 @@ def multilabel_recall(
571571
target: Tensor,
572572
num_labels: int,
573573
threshold: float = 0.5,
574-
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
574+
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
575575
multidim_average: Literal["global", "samplewise"] = "global",
576576
ignore_index: Optional[int] = None,
577577
validate_args: bool = True,

Diff for: src/torchmetrics/functional/classification/specificity.py

+5-5
Original file line numberDiff line numberDiff line change
@@ -132,7 +132,7 @@ def multiclass_specificity(
132132
preds: Tensor,
133133
target: Tensor,
134134
num_classes: int,
135-
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
135+
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
136136
top_k: int = 1,
137137
multidim_average: Literal["global", "samplewise"] = "global",
138138
ignore_index: Optional[int] = None,
@@ -198,7 +198,7 @@ def multiclass_specificity(
198198
>>> target = tensor([2, 1, 0, 0])
199199
>>> preds = tensor([2, 1, 0, 1])
200200
>>> multiclass_specificity(preds, target, num_classes=3)
201-
tensor(0.8889)
201+
tensor(0.8750)
202202
>>> multiclass_specificity(preds, target, num_classes=3, average=None)
203203
tensor([1.0000, 0.6667, 1.0000])
204204
@@ -210,7 +210,7 @@ def multiclass_specificity(
210210
... [0.71, 0.09, 0.20],
211211
... [0.05, 0.82, 0.13]])
212212
>>> multiclass_specificity(preds, target, num_classes=3)
213-
tensor(0.8889)
213+
tensor(0.8750)
214214
>>> multiclass_specificity(preds, target, num_classes=3, average=None)
215215
tensor([1.0000, 0.6667, 1.0000])
216216
@@ -219,7 +219,7 @@ def multiclass_specificity(
219219
>>> target = tensor([[[0, 1], [2, 1], [0, 2]], [[1, 1], [2, 0], [1, 2]]])
220220
>>> preds = tensor([[[0, 2], [2, 0], [0, 1]], [[2, 2], [2, 1], [1, 0]]])
221221
>>> multiclass_specificity(preds, target, num_classes=3, multidim_average='samplewise')
222-
tensor([0.7500, 0.6556])
222+
tensor([0.7500, 0.6667])
223223
>>> multiclass_specificity(preds, target, num_classes=3, multidim_average='samplewise', average=None)
224224
tensor([[0.7500, 0.7500, 0.7500],
225225
[0.8000, 0.6667, 0.5000]])
@@ -240,7 +240,7 @@ def multilabel_specificity(
240240
target: Tensor,
241241
num_labels: int,
242242
threshold: float = 0.5,
243-
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
243+
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
244244
multidim_average: Literal["global", "samplewise"] = "global",
245245
ignore_index: Optional[int] = None,
246246
validate_args: bool = True,

Diff for: src/torchmetrics/functional/classification/stat_scores.py

+7-7
Original file line numberDiff line numberDiff line change
@@ -220,7 +220,7 @@ def binary_stat_scores(
220220
def _multiclass_stat_scores_arg_validation(
221221
num_classes: int,
222222
top_k: int = 1,
223-
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
223+
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
224224
multidim_average: Literal["global", "samplewise"] = "global",
225225
ignore_index: Optional[int] = None,
226226
zero_division: float = 0,
@@ -369,7 +369,7 @@ def _multiclass_stat_scores_update(
369369
target: Tensor,
370370
num_classes: int,
371371
top_k: int = 1,
372-
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
372+
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
373373
multidim_average: Literal["global", "samplewise"] = "global",
374374
ignore_index: Optional[int] = None,
375375
) -> tuple[Tensor, Tensor, Tensor, Tensor]:
@@ -450,7 +450,7 @@ def _multiclass_stat_scores_compute(
450450
fp: Tensor,
451451
tn: Tensor,
452452
fn: Tensor,
453-
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
453+
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
454454
multidim_average: Literal["global", "samplewise"] = "global",
455455
) -> Tensor:
456456
"""Stack statistics and compute support also.
@@ -478,7 +478,7 @@ def multiclass_stat_scores(
478478
preds: Tensor,
479479
target: Tensor,
480480
num_classes: int,
481-
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
481+
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
482482
top_k: int = 1,
483483
multidim_average: Literal["global", "samplewise"] = "global",
484484
ignore_index: Optional[int] = None,
@@ -591,7 +591,7 @@ def multiclass_stat_scores(
591591
def _multilabel_stat_scores_arg_validation(
592592
num_labels: int,
593593
threshold: float = 0.5,
594-
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
594+
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
595595
multidim_average: Literal["global", "samplewise"] = "global",
596596
ignore_index: Optional[int] = None,
597597
zero_division: float = 0,
@@ -715,7 +715,7 @@ def _multilabel_stat_scores_compute(
715715
fp: Tensor,
716716
tn: Tensor,
717717
fn: Tensor,
718-
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
718+
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
719719
multidim_average: Literal["global", "samplewise"] = "global",
720720
) -> Tensor:
721721
"""Stack statistics and compute support also.
@@ -742,7 +742,7 @@ def multilabel_stat_scores(
742742
target: Tensor,
743743
num_labels: int,
744744
threshold: float = 0.5,
745-
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "macro",
745+
average: Optional[Literal["micro", "macro", "weighted", "none"]] = "micro",
746746
multidim_average: Literal["global", "samplewise"] = "global",
747747
ignore_index: Optional[int] = None,
748748
validate_args: bool = True,

0 commit comments

Comments
 (0)