-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtrainer.py
274 lines (233 loc) · 11.5 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
import logging
import os
import random
import sys
import numpy as np
import torch
import torch.optim as optim
from tensorboardX import SummaryWriter
from torch.nn.modules.loss import CrossEntropyLoss
from torch.utils.data import DataLoader
from tqdm import tqdm
import pandas as pd
import torch.nn.functional as F
import utils
import rasterio
from rasterio.windows import Window
from rasterio.errors import RasterioError
from torch.utils.data.dataset import IterableDataset
class StreamingGeospatialDataset(IterableDataset):
def __init__(self, imagery_fns, label_fns=None, groups=None, chip_size=256, num_chips_per_tile=200, windowed_sampling=False, image_transform=None, label_transform=None, nodata_check=None, verbose=False):
if label_fns is None:
self.fns = imagery_fns
self.use_labels = False
else:
self.fns = list(zip(imagery_fns, label_fns))
self.use_labels = True
self.groups = groups
self.chip_size = chip_size
self.num_chips_per_tile = num_chips_per_tile
self.windowed_sampling = windowed_sampling
self.image_transform = image_transform
self.label_transform = label_transform
self.nodata_check = nodata_check
self.verbose = verbose
if self.verbose:
print("Constructed StreamingGeospatialDataset")
def stream_tile_fns(self):
worker_info = torch.utils.data.get_worker_info()
if worker_info is None: # In this case we are not loading through a DataLoader with multiple workers
worker_id = 0
num_workers = 1
else:
worker_id = worker_info.id
num_workers = worker_info.num_workers
# We only want to shuffle the order we traverse the files if we are the first worker (else, every worker will shuffle the files...)
if worker_id == 0:
np.random.shuffle(self.fns) # in place
if self.verbose:
print("Creating a filename stream for worker %d" % (worker_id))
# This logic splits up the list of filenames into `num_workers` chunks. Each worker will recieve ceil(num_filenames / num_workers) filenames to generate chips from. If the number of workers doesn't divide the number of filenames evenly then the last worker will have fewer filenames.
N = len(self.fns)
num_files_per_worker = int(np.ceil(N / num_workers))
lower_idx = worker_id * num_files_per_worker
upper_idx = min(N, (worker_id+1) * num_files_per_worker)
for idx in range(lower_idx, upper_idx):
label_fn = None
if self.use_labels:
img_fn, label_fn = self.fns[idx]
else:
img_fn = self.fns[idx]
if self.groups is not None:
group = self.groups[idx]
else:
group = None
if self.verbose:
print("Worker %d, yielding file %d" % (worker_id, idx))
yield (img_fn, label_fn, group)
def stream_chips(self):
for img_fn, label_fn, group in self.stream_tile_fns():
num_skipped_chips = 0
# Open file pointers
img_fp = rasterio.open(img_fn, "r")
label_fp = rasterio.open(label_fn, "r") if self.use_labels else None
height, width = img_fp.shape
if self.use_labels: # garuntee that our label mask has the same dimensions as our imagery
t_height, t_width = label_fp.shape
assert height == t_height and width == t_width
# If we aren't in windowed sampling mode then we should read the entire tile up front
img_data = None
label_data = None
try:
if not self.windowed_sampling:
img_data = np.rollaxis(img_fp.read(3), 0, 3)
if self.use_labels:
label_data = label_fp.read().squeeze() # assume the label geotiff has a single channel
except RasterioError as e:
print("WARNING: Error reading in entire file, skipping to the next file")
continue
for i in range(self.num_chips_per_tile):
# Select the top left pixel of our chip randomly
x = np.random.randint(0, width-self.chip_size)
y = np.random.randint(0, height-self.chip_size)
# Read imagery / labels
img = None
labels = None
if self.windowed_sampling:
try:
img = np.rollaxis(img_fp.read(window=Window(x, y, self.chip_size, self.chip_size)), 0, 3)
# print(img.shape)
if self.use_labels:
labels = label_fp.read(window=Window(x, y, self.chip_size, self.chip_size)).squeeze()
except RasterioError:
print("WARNING: Error reading chip from file, skipping to the next chip")
continue
else:
img = img_data[y:y+self.chip_size, x:x+self.chip_size, :]
if self.use_labels:
labels = label_data[y:y+self.chip_size, x:x+self.chip_size]
# Check for no data
if self.nodata_check is not None:
if self.use_labels:
skip_chip = self.nodata_check(img, labels)
else:
skip_chip = self.nodata_check(img)
if skip_chip: # The current chip has been identified as invalid by the `nodata_check(...)` method
num_skipped_chips += 1
continue
# Transform the imagery
if self.image_transform is not None:
if self.groups is None:
img = self.image_transform(img)
else:
img = self.image_transform(img, group)
else:
img = torch.from_numpy(img).squeeze()
# Transform the labels
if self.use_labels:
if self.label_transform is not None:
if self.groups is None:
labels = self.label_transform(labels)
else:
print(label_fn)
labels = self.label_transform(labels, group)
print(labels)
else:
labels = torch.from_numpy(labels).squeeze()
# Note, that img should be a torch "Double" type (i.e. a np.float32) and labels should be a torch "Long" type (i.e. np.int64)
if self.use_labels:
yield img, labels
else:
yield img
# Close file pointers
img_fp.close()
if self.use_labels:
label_fp.close()
if num_skipped_chips>0 and self.verbose:
print("We skipped %d chips on %s" % (img_fn))
def __iter__(self):
if self.verbose:
print("Creating a new StreamingGeospatialDataset iterator")
return iter(self.stream_chips())
def image_transforms(img):
img = (img - utils.IMAGE_MEANS) / utils.IMAGE_STDS
img = np.rollaxis(img, 2, 0).astype(np.float32)
img = torch.from_numpy(img)
return img
def label_transforms(labels):
labels = utils.LABEL_CLASS_TO_IDX_MAP[labels]
labels = torch.from_numpy(labels)
return labels
def nodata_check(img, labels):
return np.any(labels == 0) or np.any(np.sum(img == 0, axis=2) == 4)
def trainer_dataset(args, model, snapshot_path):
logging.basicConfig(filename=snapshot_path + "/log.txt", level=logging.INFO,
format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S')
logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
logging.info(str(args))
base_lr = args.base_lr
batch_size = args.batch_size
#-------------------
# Load input data
#-------------------
input_dataframe = pd.read_csv(args.list_dir)
image_fns = input_dataframe["image_fn"].values
label_fns = input_dataframe["label_fn"].values
NUM_CHIPS_PER_TILE =50 # How many chips will be sampled from one large-scale tile
CHIP_SIZE = 224 # Size of each sampled chip
db_train = StreamingGeospatialDataset(
imagery_fns=image_fns, label_fns=label_fns, groups=None, chip_size=CHIP_SIZE, num_chips_per_tile=NUM_CHIPS_PER_TILE, windowed_sampling=True, verbose=False,
image_transform=image_transforms, label_transform=label_transforms,nodata_check=nodata_check
) #
print("The length of train set is: {}".format(len(image_fns)*NUM_CHIPS_PER_TILE))
def worker_init_fn(worker_id):
random.seed(args.seed + worker_id)
trainloader = DataLoader(db_train, batch_size=batch_size, num_workers=8, pin_memory=True,
worker_init_fn=worker_init_fn)
model.train()
ce_loss = CrossEntropyLoss(ignore_index=0)
optimizer = optim.SGD(model.parameters(), lr=base_lr, momentum=0.9, weight_decay=0.0001)
writer = SummaryWriter(snapshot_path + '/log')
iter_num = 0
max_epoch = args.max_epochs
num_training_batches_per_epoch = int(len(image_fns) * NUM_CHIPS_PER_TILE / batch_size)
max_iterations = args.max_epochs * len(image_fns)*NUM_CHIPS_PER_TILE
logging.info("{} iterations per epoch. {} max iterations ".format(len(image_fns)*NUM_CHIPS_PER_TILE, max_iterations))
iterator = range(max_epoch)
for epoch_num in iterator:
loss1 = []
loss2 = []
for i_batch, (image_batch,label_batch) in tqdm(enumerate(trainloader), total=num_training_batches_per_epoch):
image_batch, label_batch = image_batch.cuda(), label_batch.cuda()
outputs1,outputs2 = model(image_batch)
t_output = F.softmax((outputs1), dim=1) # Created mask label
t_output = t_output.argmax(axis=1)
mask_output=torch.where(t_output==label_batch,label_batch,0)
loss_ce1 = ce_loss(outputs1, label_batch[:].long()) # General CE loss for CNN branch
loss_ce2 = ce_loss(outputs2, mask_output[:].long()) # Mask CE (mce) loss for ViT branch
loss=0.5*loss_ce1+0.5*loss_ce2
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_ = base_lr * (1.0 - iter_num / max_iterations) ** 0.9
for param_group in optimizer.param_groups:
param_group['lr'] = lr_
loss1.append(loss_ce1.item())
loss2.append(loss_ce2.item())
iter_num = iter_num + 1
avg_loss1 = np.mean(loss1)
avg_loss2=np.mean(loss2)
logging.info('Epoch : %d, CE-branch1 : %f, MCE-branch2: %f, loss: %f' % (epoch_num, avg_loss1, avg_loss2, avg_loss1*0.5+avg_loss2*0.5))
save_interval = 20
if epoch_num % save_interval == 0:
save_mode_path = os.path.join(snapshot_path, 'epoch_' + str(epoch_num) + '.pth')
torch.save(model.state_dict(), save_mode_path)
logging.info("save model to {}".format(save_mode_path))
if epoch_num >= max_epoch - 1:
save_mode_path = os.path.join(snapshot_path, 'epoch_' + str(epoch_num) + '.pth')
torch.save(model.state_dict(), save_mode_path)
logging.info("save model to {}".format(save_mode_path))
# iterator.close()
break
writer.close()
return "Training Finished!"