-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathL38_camshift_object_tracking.py
45 lines (36 loc) · 1.42 KB
/
L38_camshift_object_tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import cv2, numpy as np
# CAMshift tracking algorithm:
# Continously Adaptive Meanshift
cap = cv2.VideoCapture('slow_traffic.mp4')
ret, frame = cap.read()
x, y, width, height = 300, 200, 100, 50 # calcolato "a mano"
track_window = (x, y, width, height)
ROI = frame[y:y+height, x:x+width]
hsv_ROI = cv2.cvtColor(ROI, cv2.COLOR_BGR2HSV)
mask = cv2.inRange(hsv_ROI, np.array((0., 60., 32.)), np.array((180., 255., 255.)))
ROI_hist = cv2.calcHist([hsv_ROI], [0], mask, [180], [0, 180])
cv2.normalize(ROI_hist, ROI_hist, 0, 255, cv2.NORM_MINMAX)
term_crit = (cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1)
while cap.isOpened():
ret, frame = cap.read()
if ret == True:
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV)
dst = cv2.calcBackProject([hsv], [0], ROI_hist, [0, 180], 1)
# apply the Camshift to get the new location
ret, track_window = cv2.CamShift(dst, track_window, term_crit)
#print(ret)
pts = cv2.boxPoints(ret)
#print(pts)
pts = np.int0(pts)
final_img = cv2.polylines(frame, [pts], True, (255,0,0), 2)
#x, y, w, h = track_window
#final_img = cv2.rectangle(frame, (x, y), (x+w, y+h), (255, 0, 0), 3)
cv2.imshow('Final Image', final_img)
cv2.imshow('Dst', dst)
#cv2.imshow('Video', frame)
if cv2.waitKey(30) & 0xFF == 27:
break
else:
break
cap.release()
cv2.destroyAllWindows()