-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathL22_motion_detection_tracking.py
34 lines (26 loc) · 1.09 KB
/
L22_motion_detection_tracking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import cv2, numpy as np
cap = cv2.VideoCapture('./opencv/samples/data/vtest.avi')
ret, frame1 = cap.read()
ret, frame2 = cap.read()
while(cap.isOpened()):
#ret, frame = cap.read()
diff = cv2.absdiff(frame1, frame2) # difference between frames
gray = cv2.cvtColor(diff, cv2.COLOR_BGR2GRAY)
blur = cv2.GaussianBlur(gray, (5,5), 0) # bluring
_, thresh = cv2.threshold(blur, 20, 255, cv2.THRESH_BINARY) # thresholding
dilated = cv2.dilate(thresh, None, iterations=3) # dilation
contours, _ = cv2.findContours(dilated, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
for contour in contours:
(x, y, w, h) = cv2.boundingRect(contour)
if cv2.contourArea(contour) < 840:
continue
cv2.rectangle(frame1, (x,y), (x+w,y+h), (0,255,0), 2)
cv2.putText(frame1, "Status: Movement", (10,20), cv2.FONT_HERSHEY_SIMPLEX, .5, (0,255,255), 2)
#cv2.drawContours(frame1, contours, -1, (0,255,0), 2)
cv2.imshow('frame', frame1)
frame1 = frame2
ret, frame2 = cap.read()
if cv2.waitKey(40) == 27:
break
cv2.destroyAllWindows()
cap.release()