-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathtransformer.py
1360 lines (1151 loc) · 61.7 KB
/
transformer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import math
import torch
import torch.jit as jit
import torch._jit_internal as _jit_internal
import copy
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.init import xavier_uniform_, constant_, xavier_normal_
class TransformerEncoder(nn.Module):
r"""TransformerEncoder is a stack of N encoder layers
Args:
encoder_layer: an instance of the TransformerEncoderLayer() class (required).
num_layers: the number of sub-encoder-layers in the encoder (required).
norm: the layer normalization component (optional).
Examples::
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
>>> transformer_encoder = TransformerEncoder(encoder_layer, num_layers=6)
>>> src = torch.rand(hi, 32, 512)
>>> out = transformer_encoder(src)
"""
def __init__(self, encoder_layer, num_layers, norm=None):
super(TransformerEncoder, self).__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.norm = norm
def forward(self, src, mask=None, src_key_padding_mask=None):
r"""Pass the input through the encoder layers in turn.
Args:
src: the sequnce to the encoder (required).
mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
output = src
for i in range(self.num_layers):
output = self.layers[i](output, src_mask=mask,
src_key_padding_mask=src_key_padding_mask)
if self.norm:
output = self.norm(output)
return output
class TransformerEncoderLayer(nn.Module):
r"""TransformerEncoderLayer is made up of self-attn and feedforward network.
This standard encoder layer is based on the paper "Attention Is All You Need".
Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is par you need. In Advances in
Neural Information Processing Systems, pages 6000-6010. Users may modify or implement
in a different way during application.
Args:
d_model: the number of expected features in the input (required).
nhead: the number of heads in the multiheadattention models (required).
dim_feedforward: the dimension of the feedforward network model (default=2048).
dropout: the dropout value (default=0.1).
activation: the activation function of intermediate layer, relu or gelu (default=relu).
Examples::
>>> encoder_layer = TransformerEncoderLayer(d_model=512, nhead=8)
>>> src = torch.rand(hi, 32, 512)
>>> out = encoder_layer(src)
"""
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu"):
super(TransformerEncoderLayer, self).__init__()
self.self_attn = MultiheadAttention(d_model, nhead, bias=False, dropout=dropout)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
def forward(self, src, src_mask=None, src_key_padding_mask=None):
r"""Pass the input through the encoder layer.
Args:
src: the sequnce to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
src2 = self.self_attn(src, src, src, attn_mask=src_mask,
key_padding_mask=src_key_padding_mask)[0]
src = src + self.dropout1(src2)
src = self.norm1(src)
if hasattr(self, "activation"):
src2 = self.linear2(self.dropout(self.activation(self.linear1(src))))
else: # for backward compatibility
src2 = self.linear2(self.dropout(F.relu(self.linear1(src))))
src = src + self.dropout2(src2)
src = self.norm2(src)
return src
class MultiheadAttention(nn.Module):
r"""Allows the model to jointly attend to information
from different representation subspaces.
See reference: Attention Is All You Need
.. math::
\text{MultiHead}(Q, K, V) = \text{Concat}(head_1,\dots,head_h)W^O
\text{where} head_i = \text{Attention}(QW_i^Q, KW_i^K, VW_i^V)
Args:
embed_dim: total dimension of the model.
num_heads: parallel attention heads.
dropout: a Dropout layer on attn_output_weights. Default: 0.0.
bias: add bias as module parameter. Default: True.
add_bias_kv: add bias to the key and value sequences at dim=0.
add_zero_attn: add a new batch of zeros to the key and
value sequences at dim=1.
kdim: total number of features in key. Default: None.
vdim: total number of features in key. Default: None.
Note: if kdim and vdim are None, they will be set to embed_dim such that
query, key, and value have the same number of features.
Examples::
>>> multihead_attn = MultiheadAttention(embed_dim, num_heads)
>>> attn_output, attn_output_weights = multihead_attn(query, key, value)
"""
__annotations__ = {
'bias_k': _jit_internal.Optional[torch.Tensor],
'bias_v': _jit_internal.Optional[torch.Tensor],
}
__constants__ = ['q_proj_weight', 'k_proj_weight', 'v_proj_weight', 'in_proj_weight']
def __init__(self, embed_dim, num_heads, dropout=0., bias=False,
add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None):
super(MultiheadAttention, self).__init__()
self.embed_dim = embed_dim
self.kdim = kdim if kdim is not None else embed_dim
self.vdim = vdim if vdim is not None else embed_dim
self._qkv_same_embed_dim = self.kdim == embed_dim and self.vdim == embed_dim
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
if self._qkv_same_embed_dim is False:
self.q_proj_weight = nn.Parameter(torch.Tensor(embed_dim, embed_dim), requires_grad=True)
self.k_proj_weight = nn.Parameter(torch.Tensor(embed_dim, self.kdim), requires_grad=True)
self.v_proj_weight = nn.Parameter(torch.Tensor(embed_dim, self.vdim), requires_grad=True)
self.register_parameter('in_proj_weight', None)
else:
self.in_proj_weight = nn.Parameter(torch.empty(3 * embed_dim, embed_dim), requires_grad=True)
self.register_parameter('q_proj_weight', None)
self.register_parameter('k_proj_weight', None)
self.register_parameter('v_proj_weight', None)
if bias:
self.in_proj_bias = nn.Parameter(torch.empty(3 * embed_dim), requires_grad=True)
else:
self.register_parameter('in_proj_bias', None)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
if add_bias_kv:
self.bias_k = nn.Parameter(torch.empty(1, 1, embed_dim), requires_grad=True)
self.bias_v = nn.Parameter(torch.empty(1, 1, embed_dim), requires_grad=True)
else:
self.bias_k = self.bias_v = None
self.add_zero_attn = add_zero_attn
self._reset_parameters()
def _reset_parameters(self):
if self._qkv_same_embed_dim:
xavier_uniform_(self.in_proj_weight)
else:
xavier_uniform_(self.q_proj_weight)
xavier_uniform_(self.k_proj_weight)
xavier_uniform_(self.v_proj_weight)
if self.in_proj_bias is not None:
constant_(self.in_proj_bias, 0.)
constant_(self.out_proj.bias, 0.)
if self.bias_k is not None:
xavier_normal_(self.bias_k)
if self.bias_v is not None:
xavier_normal_(self.bias_v)
def __setstate__(self, state):
super(MultiheadAttention, self).__setstate__(state)
# Support loading old MultiheadAttention checkpoints generated by v1.1.0
if 'self._qkv_same_embed_dim' not in self.__dict__:
self._qkv_same_embed_dim = True
def forward(self, query, key, value, key_padding_mask=None,
need_weights=True, attn_mask=None):
# type: (torch.Tensor, torch.Tensor, torch.Tensor, _jit_internal.Optional[torch.Tensor], bool, _jit_internal.Optional[torch.Tensor]) -> torch.Tuple[torch.Tensor, _jit_internal.Optional[torch.Tensor]]
r"""
Args:
query, key, value: map a query and a set of key-value pairs to an output.
See "Attention Is All You Need" for more details.
key_padding_mask: if provided, specified padding elements in the key will
be ignored by the attention. This is an binary mask. When the value is True,
the corresponding value on the attention layer will be filled with -inf.
need_weights: output attn_output_weights.
attn_mask: mask that prevents attention to certain positions. This is an additive mask
(i.e. the values will be added to the attention layer).
Shape:
- Inputs:
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
the embedding dimension.
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- key_padding_mask: :math:`(N, S)`, ByteTensor, where N is the batch size, S is the source sequence length.
- attn_mask: :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
- Outputs:
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
E is the embedding dimension.
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
L is the target sequence length, S is the source sequence length.
"""
if not self._qkv_same_embed_dim:
return multi_head_attention_forward(
query, key, value, self.embed_dim, self.num_heads,
self.in_proj_weight, self.in_proj_bias,
self.bias_k, self.bias_v, self.add_zero_attn,
self.dropout, self.out_proj.weight, self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask, need_weights=need_weights,
attn_mask=attn_mask, use_separate_proj_weight=True,
q_proj_weight=self.q_proj_weight, k_proj_weight=self.k_proj_weight,
v_proj_weight=self.v_proj_weight)
else:
return multi_head_attention_forward(
query, key, value, self.embed_dim, self.num_heads,
self.in_proj_weight, self.in_proj_bias,
self.bias_k, self.bias_v, self.add_zero_attn,
self.dropout, self.out_proj.weight, self.out_proj.bias,
training=self.training,
key_padding_mask=key_padding_mask, need_weights=need_weights,
attn_mask=attn_mask)
def _get_clones(module, N):
return nn.ModuleList([copy.deepcopy(module) for i in range(N)])
def _get_activation_fn(activation):
if activation == "relu":
return F.relu
elif activation == "gelu":
return F.gelu
else:
raise RuntimeError("activation should be relu/gelu, not %s." % activation)
def multi_head_attention_forward(query, # type: torch.Tensor
key, # type: torch.Tensor
value, # type: torch.Tensor
embed_dim_to_check, # type: int
num_heads, # type: int
in_proj_weight, # type: torch.Tensor
in_proj_bias, # type: torch.Tensor
bias_k, # type: _jit_internal.Optional[torch.Tensor]
bias_v, # type: _jit_internal.Optional[torch.Tensor]
add_zero_attn, # type: bool
dropout_p, # type: float
out_proj_weight, # type: torch.Tensor
out_proj_bias, # type: torch.Tensor
training=True, # type: bool
key_padding_mask=None, # type: _jit_internal.Optional[torch.Tensor]
need_weights=True, # type: bool
attn_mask=None, # type: _jit_internal.Optional[torch.Tensor]
use_separate_proj_weight=False, # type: bool
q_proj_weight=None, # type: _jit_internal.Optional[torch.Tensor]
k_proj_weight=None, # type: _jit_internal.Optional[torch.Tensor]
v_proj_weight=None, # type: _jit_internal.Optional[torch.Tensor]
static_k=None, # type: _jit_internal.Optional[torch.Tensor]
static_v=None # type: _jit_internal.Optional[torch.Tensor]
):
# type: (...) -> torch.Tuple[torch.Tensor, _jit_internal.Optional[torch.Tensor]]
r"""
Args:
query, key, value: map a query and a set of key-value pairs to an output.
See "Attention Is All You Need" for more details.
embed_dim_to_check: total dimension of the model.
num_heads: parallel attention heads.
in_proj_weight, in_proj_bias: input projection weight and bias.
bias_k, bias_v: bias of the key and value sequences to be added at dim=0.
add_zero_attn: add a new batch of zeros to the key and
value sequences at dim=1.
dropout_p: probability of an element to be zeroed.
out_proj_weight, out_proj_bias: the output projection weight and bias.
training: apply dropout if is ``True``.
key_padding_mask: if provided, specified padding elements in the key will
be ignored by the attention. This is an binary mask. When the value is True,
the corresponding value on the attention layer will be filled with -inf.
need_weights: output attn_output_weights.
attn_mask: mask that prevents attention to certain positions. This is an additive mask
(i.e. the values will be added to the attention layer).
use_separate_proj_weight: the function accept the proj. weights for query, key,
and value in differnt forms. If false, in_proj_weight will be used, which is
a combination of q_proj_weight, k_proj_weight, v_proj_weight.
q_proj_weight, k_proj_weight, v_proj_weight, in_proj_bias: input projection weight and bias.
static_k, static_v: static key and value used for attention operators.
Shape:
Inputs:
- query: :math:`(L, N, E)` where L is the target sequence length, N is the batch size, E is
the embedding dimension.
- key: :math:`(S, N, E)`, where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- value: :math:`(S, N, E)` where S is the source sequence length, N is the batch size, E is
the embedding dimension.
- key_padding_mask: :math:`(N, S)`, ByteTensor, where N is the batch size, S is the source sequence length.
- attn_mask: :math:`(L, S)` where L is the target sequence length, S is the source sequence length.
- static_k: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
- static_v: :math:`(N*num_heads, S, E/num_heads)`, where S is the source sequence length,
N is the batch size, E is the embedding dimension. E/num_heads is the head dimension.
Outputs:
- attn_output: :math:`(L, N, E)` where L is the target sequence length, N is the batch size,
E is the embedding dimension.
- attn_output_weights: :math:`(N, L, S)` where N is the batch size,
L is the target sequence length, S is the source sequence length.
"""
tgt_len, bsz, embed_dim = query.size()
assert embed_dim == embed_dim_to_check
assert key.size() == value.size()
head_dim = embed_dim // num_heads
assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
scaling = float(head_dim) ** -0.5
if not use_separate_proj_weight:
if torch.equal(query, key) and torch.equal(key, value):
# self-attention
q, k, v = F.linear(query, in_proj_weight, in_proj_bias).chunk(3, dim=-1)
# ######blocks that can be ignore###### # (start)
elif torch.equal(key, value):
# encoder-decoder attention
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = 0
_end = embed_dim
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = F.linear(query, _w, _b)
if key is None:
assert value is None
k = None
v = None
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim
_end = None
_w = in_proj_weight[_start:, :]
if _b is not None:
_b = _b[_start:]
k, v = F.linear(key, _w, _b).chunk(2, dim=-1)
else:
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = 0
_end = embed_dim
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
q = F.linear(query, _w, _b)
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim
_end = embed_dim * 2
_w = in_proj_weight[_start:_end, :]
if _b is not None:
_b = _b[_start:_end]
k = F.linear(key, _w, _b)
# This is inline in_proj function with in_proj_weight and in_proj_bias
_b = in_proj_bias
_start = embed_dim * 2
_end = None
_w = in_proj_weight[_start:, :]
if _b is not None:
_b = _b[_start:]
v = F.linear(value, _w, _b)
# ######blocks that can be ignore###### #(end)
# ######blocks that can be ignore###### #(start)
else:
q_proj_weight_non_opt = jit._unwrap_optional(q_proj_weight)
len1, len2 = q_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == query.size(-1)
k_proj_weight_non_opt = jit._unwrap_optional(k_proj_weight)
len1, len2 = k_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == key.size(-1)
v_proj_weight_non_opt = jit._unwrap_optional(v_proj_weight)
len1, len2 = v_proj_weight_non_opt.size()
assert len1 == embed_dim and len2 == value.size(-1)
if in_proj_bias is not None:
q = F.linear(query, q_proj_weight_non_opt, in_proj_bias[0:embed_dim])
k = F.linear(key, k_proj_weight_non_opt, in_proj_bias[embed_dim:(embed_dim * 2)])
v = F.linear(value, v_proj_weight_non_opt, in_proj_bias[(embed_dim * 2):])
else:
q = F.linear(query, q_proj_weight_non_opt, in_proj_bias)
k = F.linear(key, k_proj_weight_non_opt, in_proj_bias)
v = F.linear(value, v_proj_weight_non_opt, in_proj_bias)
# ######blocks that can be ignore###### #(end)
q = q * scaling
# ######blocks that can be ignore###### #(start)
if bias_k is not None and bias_v is not None:
if static_k is None and static_v is None:
k = torch.cat([k, bias_k.repeat(1, bsz, 1)])
v = torch.cat([v, bias_v.repeat(1, bsz, 1)])
if attn_mask is not None:
attn_mask = torch.cat([attn_mask,
torch.zeros((attn_mask.size(0), 1),
dtype=attn_mask.dtype,
device=attn_mask.device)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[key_padding_mask, torch.zeros((key_padding_mask.size(0), 1),
dtype=key_padding_mask.dtype,
device=key_padding_mask.device)], dim=1)
else:
assert static_k is None, "bias cannot be added to static key."
assert static_v is None, "bias cannot be added to static value."
else:
assert bias_k is None
assert bias_v is None
# ######blocks that can be ignore###### #(end)
q = q.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
# ######blocks that can be ignore###### #(start)
if static_k is not None:
assert static_k.size(0) == bsz * num_heads
assert static_k.size(2) == head_dim
k = static_k
if static_v is not None:
assert static_v.size(0) == bsz * num_heads
assert static_v.size(2) == head_dim
v = static_v
# ######blocks that can be ignore###### #(end)
src_len = k.size(1)
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
# ######blocks that can be ignore###### # (start)
if add_zero_attn:
src_len += 1
k = torch.cat([k, torch.zeros((k.size(0), 1) + k.size()[2:], dtype=k.dtype, device=k.device)], dim=1)
v = torch.cat([v, torch.zeros((v.size(0), 1) + v.size()[2:], dtype=v.dtype, device=v.device)], dim=1)
if attn_mask is not None:
attn_mask = torch.cat([attn_mask, torch.zeros((attn_mask.size(0), 1),
dtype=attn_mask.dtype,
device=attn_mask.device)], dim=1)
if key_padding_mask is not None:
key_padding_mask = torch.cat(
[key_padding_mask, torch.zeros((key_padding_mask.size(0), 1),
dtype=key_padding_mask.dtype,
device=key_padding_mask.device)], dim=1)
# ######blocks that can be ignore###### # (end)
attn_output_weights = torch.bmm(q, k.transpose(1, 2))
assert list(attn_output_weights.size()) == [bsz * num_heads, tgt_len, src_len]
if attn_mask is not None:
# attn_mask has the shape(N*num_heads, L, S)
# additive mode
# attn_output_weights += attn_mask
# masked mode
attn_output_weights = attn_output_weights.masked_fill(
attn_mask,
1e-30
)
if key_padding_mask is not None:
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
attn_output_weights = attn_output_weights.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2),
float('-inf'),
)
attn_output_weights = attn_output_weights.view(bsz * num_heads, tgt_len, src_len)
attn_output_weights = F.softmax(
attn_output_weights, dim=-1)
attn_output_weights = F.dropout(attn_output_weights, p=dropout_p, training=training)
attn_output = torch.bmm(attn_output_weights, v)
assert list(attn_output.size()) == [bsz * num_heads, tgt_len, head_dim]
attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_output = F.linear(attn_output, out_proj_weight, out_proj_bias)
if need_weights:
# average attention weights over heads
attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len)
return attn_output, attn_output_weights.sum(dim=1) / num_heads
else:
return attn_output, None
class TwoStreamMultiAttention(nn.Module):
def __init__(self, embed_dim, num_heads, dropout=0., bias=False):
super(TwoStreamMultiAttention, self).__init__()
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.embed_dim = embed_dim
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.in_proj_weight = nn.Parameter(torch.empty(3 * embed_dim, embed_dim), requires_grad=True)
self.q_proj_weight = nn.Parameter(torch.empty(embed_dim, embed_dim), requires_grad=True)
self.k_proj_weight = nn.Parameter(torch.empty(embed_dim, embed_dim), requires_grad=True)
self.v_proj_weight = nn.Parameter(torch.empty(embed_dim, embed_dim), requires_grad=True)
if bias:
self.in_proj_bias = nn.Parameter(torch.empty(3 * embed_dim), requires_grad=True)
self.q_proj_bias = nn.Parameter(torch.empty(embed_dim), requires_grad=True)
self.k_proj_bias = nn.Parameter(torch.empty(embed_dim), requires_grad=True)
self.v_proh_bias = nn.Parameter(torch.empty(embed_dim), requires_grad=True)
else:
self.register_parameter('in_proj_bias', None)
self.register_parameter('q_proj_bias', None)
self.register_parameter('k_proj_bias', None)
self.register_parameter('v_proj_bias', None)
self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias)
self._reset_parameters()
def _reset_parameters(self):
xavier_uniform_(self.q_proj_weight)
xavier_uniform_(self.k_proj_weight)
xavier_uniform_(self.v_proj_weight)
if self.in_proj_bias is not None:
constant_(self.q_proj_bias, 0.)
constant_(self.k_proj_bias, 0.)
constant_(self.v_proj_bias, 0.)
constant_(self.out_proj.bias, 0.)
def forward(self, query1, query2, key, value, key_padding_mask=None,
need_weights=True, attn_mask=None, training=True):
return two_tream_multi_head_attention_forward(query1,
query2,
key,
value,
self.embed_dim,
self.num_heads,
q_proj_weight=self.q_proj_weight,
k_proj_weight=self.k_proj_weight,
v_proj_weight=self.v_proj_weight,
q_proj_bias=self.q_proj_bias,
k_proj_bias=self.k_proj_bias,
v_proj_bias=self.v_proj_bias,
dropout_p=self.dropout,
out_proj_weight=self.out_proj.weight,
out_proj_bias=self.out_proj.bias,
training=training,
key_padding_mask=key_padding_mask,
need_weights=need_weights,
attn_mask=attn_mask)
def two_tream_multi_head_attention_forward(query1, query2, key, value, embed_dim_to_check, num_heads,
q_proj_weight, k_proj_weight, v_proj_weight, q_proj_bias,
k_proj_bias, v_proj_bias, dropout_p, out_proj_weight,
out_proj_bias, training=True, key_padding_mask=None,
need_weights=True, attn_mask=None):
tgt_len, bsz, embed_dim = query1.size()
assert embed_dim == embed_dim_to_check
assert key.size() == value.size()
head_dim = embed_dim // num_heads
assert head_dim * num_heads == embed_dim, "embed_dim must be divisible by num_heads"
scaling = float(head_dim) ** -0.5
q1 = F.linear(query1, q_proj_weight, q_proj_bias)
q2 = F.linear(query2, q_proj_weight, q_proj_bias)
k = F.linear(key, k_proj_weight, k_proj_bias)
v = F.linear(value, v_proj_weight, v_proj_bias)
q1 = q1 * scaling
q2 = q2 * scaling
q1 = q1.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
q2 = q2.contiguous().view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1)
if k is not None:
k = k.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
if v is not None:
v = v.contiguous().view(-1, bsz * num_heads, head_dim).transpose(0, 1)
src_len = k.size(1)
if key_padding_mask is not None:
assert key_padding_mask.size(0) == bsz
assert key_padding_mask.size(1) == src_len
# emo shift stream
attn_output_weights_s = torch.bmm(q2, k.transpose(1, 2))
assert list(attn_output_weights_s.size()) == [bsz * num_heads, tgt_len, src_len]
if attn_mask is not None:
# attn_mask has the shape(N*num_heads, L, S)
# additive mode
# attn_output_weights_s += attn_mask
# masked mode
attn_output_weights_s = attn_output_weights_s.masked_fill(attn_mask, 1e-30)
if key_padding_mask is not None:
attn_output_weights_s = attn_output_weights_s.view(bsz, num_heads, tgt_len, src_len)
attn_output_weights_s = attn_output_weights_s.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2),
float('-inf'),
)
attn_output_weights_s = attn_output_weights_s.view(bsz * num_heads, tgt_len, src_len)
attn_output_weights_s = F.softmax(attn_output_weights_s, dim=-1)
attn_output_weights_s = F.dropout(attn_output_weights_s, p=dropout_p, training=training)
attn_output_s = torch.bmm(attn_output_weights_s, v)
# emotion detection stream
# # parallel mode
# k = k + q2
# v = k + q2
# stack mode
k = k + attn_output_s
v = v + attn_output_s
attn_output_weights_d = torch.bmm(q1, k.transpose(1, 2))
assert list(attn_output_weights_d.size()) == [bsz * num_heads, tgt_len, src_len]
if attn_mask is not None:
# additive mode
# attn_output_weights_d += attn_mask
# masked mode
attn_output_weights_d = attn_output_weights_d.masked_fill(attn_mask, 1e-30)
if key_padding_mask is not None:
attn_output_weights_d = attn_output_weights_d.view(bsz, num_heads, tgt_len, src_len)
attn_output_weights_d = attn_output_weights_d.masked_fill(
key_padding_mask.unsqueeze(1).unsqueeze(2),
float('-inf'),
)
attn_output_weights_d = attn_output_weights_d.view(bsz * num_heads, tgt_len, src_len)
attn_output_weights_d = F.softmax(attn_output_weights_d, dim=-1)
attn_output_weights_d = F.dropout(attn_output_weights_d, p=dropout_p, training=training)
attn_output_d = torch.bmm(attn_output_weights_d, v)
assert list(attn_output_s.size()) == [bsz * num_heads, tgt_len, head_dim]
assert list(attn_output_d.size()) == [bsz * num_heads, tgt_len, head_dim]
attn_output_s = attn_output_s.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_output_s = F.linear(attn_output_s, out_proj_weight, out_proj_bias)
attn_output_d = attn_output_d.transpose(0, 1).contiguous().view(tgt_len, bsz, embed_dim)
attn_output_d = F.linear(attn_output_d, out_proj_weight, out_proj_bias)
if need_weights:
# average attention weights over heads
attn_output_weights_s = attn_output_weights_s.view(bsz, num_heads, tgt_len, src_len)
attn_s = attn_output_weights_s.sum(dim=1) / num_heads
attn_output_weights_d = attn_output_weights_d.view(bsz, num_heads, tgt_len, src_len)
attn_d = attn_output_weights_d.sum(dim=1) / num_heads
return attn_output_d, attn_d, attn_output_s, attn_s
else:
return attn_output_d, None, attn_output_s, None
class TwoTransformerLayer(nn.Module):
def __init__(self, d_model, nhead, dim_feedforward=2048, dropout=0.1, activation="relu"):
super(TwoTransformerLayer, self).__init__()
self.self_attn = TwoStreamMultiAttention(d_model, nhead, dropout, False)
# Implementation of Feedforward model
self.linear1 = nn.Linear(d_model, dim_feedforward)
self.dropout = nn.Dropout(dropout)
self.linear2 = nn.Linear(dim_feedforward, d_model)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout1 = nn.Dropout(dropout)
self.dropout2 = nn.Dropout(dropout)
self.activation = _get_activation_fn(activation)
def forward(self, src, shiftw, src_mask=None, src_key_padding_mask=None):
r"""Pass the input through the encoder layer.
Args:
src: the sequence to the encoder layer (required).
shiftw: the sequence to the encoder layer (required).
src_mask: the mask for the src sequence (optional).
src_key_padding_mask: the mask for the src keys per batch (optional).
Shape:
see the docs in Transformer class.
"""
src2, _, sw, _ = self.self_attn(src, shiftw, src, src, need_weights=False, attn_mask=src_mask,
key_padding_mask=src_key_padding_mask)
# 2*tgt_len, bsz, emb_dim
ss = torch.cat((src, shiftw), dim=0)
# 2*tgt_len, bsz, emb_dim
ss2 = torch.cat((src2, sw), dim=0)
ss = ss + self.dropout1(ss2)
ss = self.norm1(ss)
if hasattr(self, "activation"):
ss2 = self.linear2(self.dropout(self.activation(self.linear1(ss))))
else:
ss2 = self.linear2(self.dropout(F.relu(self.linear1(ss))))
ss = ss + self.dropout2(ss2)
ss = self.norm2(ss)
src, sw = torch.chunk(ss, 2, dim=0)
return src, sw
class PositionEmbedding(nn.Module):
def __init__(self, input_dim, max_len=200, emb_dropout=0.1):
super(PositionEmbedding, self).__init__()
pe = torch.zeros(max_len, input_dim)
position = torch.arange(0., max_len).unsqueeze(1)
div_term = torch.exp(torch.arange(0., input_dim, 2) * -(math.log(10000.)/input_dim))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0)
self.emb_dropout = nn.Dropout(emb_dropout)
# (1, Max_len, D)
self.register_buffer('pe', pe)
def forward(self, x):
# x(N, L, D) pe_clip(1, L, D)
pe_clip = self.pe[:, :x.size(1)]
x = x + pe_clip
x = self.emb_dropout(x)
return x
def build_mask(utt_mask, spk_mask=None, bidirectional=False):
"""
:param utt_mask: size(N, L)
:param spk_mask: size(N, L)
:param bidirectional: bool
:return: (N, L, L) or [(N, L, L), (N, L, L)]
"""
utt_mask = torch.matmul(utt_mask.unsqueeze(2), utt_mask.unsqueeze(1))
if bidirectional is False:
utt_mask = utt_mask.tril(0)
umask = utt_mask.eq(0)
if spk_mask is not None:
batch_size = spk_mask.size(0)
seq_len = spk_mask.size(1)
mask1 = spk_mask.unsqueeze(2).expand(batch_size, seq_len, seq_len)
mask2 = spk_mask.unsqueeze(1).expand(batch_size, seq_len, seq_len)
smask = torch.eq(mask1, mask2)
smask = torch.masked_fill(smask, umask, False)
smask = torch.eq(smask, False)
return umask, smask
return umask, None
class TwoStreamTransformer(nn.Module):
def __init__(self, emb_dim, num_class, encoder_layer, num_layers, nheads, snheads=0, norm=None):
super(TwoStreamTransformer, self).__init__()
self.layers = _get_clones(encoder_layer, num_layers)
self.num_layers = num_layers
self.nheads = nheads
self.snheads = snheads
self.norm = norm
self.pe = PositionEmbedding(emb_dim, 120, 0.0)
self.shift_rep = nn.Parameter(torch.empty((1, 1, emb_dim)), requires_grad=True)
self.d_classifier = nn.Linear(emb_dim, num_class)
self.s_classifier = nn.Linear(emb_dim, 2)
self._reset_parameters()
def _reset_parameters(self):
xavier_uniform_(self.shift_rep)
xavier_uniform_(self.d_classifier.weight)
constant_(self.d_classifier.bias, 0.)
xavier_uniform_(self.s_classifier.weight)
constant_(self.s_classifier.bias, 0.)
def forward(self, src, umask=None, smask=None, src_key_padding_mask=None):
"""
:param src: the sequence to the tool kit (required). Shape [bsz, seq_len, emb_dim]
:param umask: the mask for the src sequence (optional). Shape [bsz, seq_len]
:param smask: the mask identifying different speakers for the src sequence (optional). Shape [bsz, seq_len]
:param src_key_padding_mask: the mask for the src keys per batch (optional). Shape [seq_len]
:return:
"""
bsz = src.size(0)
seq_len = src.size(1)
emb_dim = src.size(2)
sw = self.shift_rep.expand((bsz, seq_len, emb_dim))
# (bsz, seq_len, emb_dim)
src = self.pe(src)
sw = self.pe(sw)
# (seq_len, bsz, emb_dim)
output = src.transpose(0, 1)
sw = sw.transpose(0, 1)
if umask is not None:
# (bsz, seq_len, seq_len)
umask, smask = build_mask(umask, smask, False)
umask = umask.unsqueeze(1).expand((bsz, self.nheads-self.snheads, seq_len, seq_len))
if smask is not None:
smask = smask.unsqueeze(1).expand((bsz, self.snheads, seq_len, seq_len))
umask = torch.cat((umask, smask), dim=1)
# (bsz*nheads, seq_len, seq_len)
umask = umask.contiguous().view((-1, seq_len, seq_len))
for i in range(self.num_layers):
output, sw = self.layers[i](output, sw, src_mask=umask,
src_key_padding_mask=src_key_padding_mask)
if self.norm:
output = self.norm(output)
sw = self.norm(sw)
# bsz, seq_len, emb_dim
output = output.transpose(0, 1)
sw = sw.transpose(0, 1)
d_log_prob = F.log_softmax(self.d_classifier(output), dim=-1)
s_log_prob = F.log_softmax(self.s_classifier(sw), dim=-1)
return d_log_prob, s_log_prob
class BaseTransformer(nn.Module):
def __init__(self, emb_dim, feed_dim, num_layers, num_head, s_num_head, num_class, dropout, activation, norm=None):
super(BaseTransformer, self).__init__()
self.num_layers = num_layers
self.nheads = num_head
self.snheads = s_num_head
self.pe = PositionEmbedding(emb_dim, 120, 0.0)
layer = TransformerEncoderLayer(emb_dim, num_head, feed_dim, dropout, activation)
self.transformer = TransformerEncoder(layer, num_layers, None)
self.classifier = nn.Linear(emb_dim, num_class)
self.norm = norm
def _reset_parameters(self):
xavier_uniform_(self.classifier.weight)
for p in self.transformer.parameters():
if p.dim() > 1:
xavier_uniform_(p)
def forward(self, src, umask=None, smask=None, src_key_padding_mask=None):
bsz = src.size(0)
seq_len = src.size(1)
src = self.pe(src)
output = src
# (seq_len, bsz, emb_dim)
output = output.transpose(0, 1)
if umask is not None:
# (bsz, seq_len, seq_len)
umask, smask = build_mask(umask, smask, False)
umask = umask.unsqueeze(1).expand((bsz, self.nheads-self.snheads, seq_len, seq_len))
if smask is not None:
smask = smask.unsqueeze(1).expand((bsz, self.snheads, seq_len, seq_len))
umask = torch.cat((umask, smask), dim=1)
# (bsz*nheads, seq_len, seq_len)
umask = umask.contiguous().view((-1, seq_len, seq_len))
output = self.transformer(output, mask=umask, src_key_padding_mask=src_key_padding_mask)
if self.norm is not None:
output = self.norm(output)
# (bsz, seq_len, emb_dim)
output = output.transpose(0, 1)
log_prob = F.log_softmax(self.classifier(output), dim=-1)
return log_prob
class MLTTransformer(BaseTransformer):
def __init__(self, emb_dim, feed_dim, num_layers, num_head, s_num_head, num_class, dropout, activation, norm=None):
super(MLTTransformer, self).__init__(emb_dim, feed_dim, num_layers, num_head,
s_num_head, num_class, dropout, activation, norm)
hidden_size = 50
self.mlp2 = nn.Linear(emb_dim, hidden_size)
self.classifier2 = nn.Linear(hidden_size, 2)
self.mlp = nn.Linear(emb_dim, hidden_size)
self.classifier = nn.Linear(hidden_size, num_class)
def forward(self, src, umask=None, smask=None, src_key_padding_mask=None):
bsz = src.size(0)
seq_len = src.size(1)
src = self.pe(src)
output = src
# (seq_len, bsz, emb_dim)
output = output.transpose(0, 1)
if umask is not None:
# (bsz, seq_len, seq_len)
umask, smask = build_mask(umask, smask, False)
umask = umask.unsqueeze(1).expand((bsz, self.nheads - self.snheads, seq_len, seq_len))
if smask is not None:
smask = smask.unsqueeze(1).expand((bsz, self.snheads, seq_len, seq_len))
umask = torch.cat((umask, smask), dim=1)
# (bsz*nheads, seq_len, seq_len)
umask = umask.contiguous().view((-1, seq_len, seq_len))
output = self.transformer(output, mask=umask, src_key_padding_mask=src_key_padding_mask)
if self.norm is not None:
output = self.norm(output)
# (bsz, seq_len, emb_dim)
output = output.transpose(0, 1)
log_prob1 = F.log_softmax(self.classifier(F.relu(self.mlp(output))), dim=-1)
log_prob2 = F.log_softmax(self.classifier2(F.relu(self.mlp2(output))), dim=-1)
return log_prob1, log_prob2
class RelativeMultiHeadAttention(nn.Module):
def __init__(self, num_heads, embed_dim, dropout=0., bias=False, reuse=False):
super(RelativeMultiHeadAttention, self).__init__()
self.num_heads = num_heads
self.dropout = dropout
self.head_dim = embed_dim // num_heads
self.embed_dim = embed_dim
assert self.head_dim * num_heads == self.embed_dim, "embed_dim must be divisible by num_heads"
self.q_proj_weight = nn.Parameter(torch.empty(embed_dim, embed_dim), requires_grad=True)
self.k_proj_weight = nn.Parameter(torch.empty(embed_dim, embed_dim), requires_grad=True)
self.v_proj_weight = nn.Parameter(torch.empty(embed_dim, embed_dim), requires_grad=True)
self.r_proj_weight = nn.Parameter(torch.empty(embed_dim, embed_dim), requires_grad=True)
self.reuse = reuse
if reuse is False:
self.spk_embedding = nn.Embedding(2, self.embed_dim)
else:
self.spk_embedding = None
if bias:
self.q_proj_bias = nn.Parameter(torch.empty(embed_dim), requires_grad=True)
self.k_proj_bias = nn.Parameter(torch.empty(embed_dim), requires_grad=True)
self.v_proj_bias = nn.Parameter(torch.empty(embed_dim), requires_grad=True)
self.r_proj_bias = nn.Parameter(torch.empty(embed_dim), requires_grad=True)
else:
self.register_parameter('q_proj_bias', None)
self.register_parameter('k_proj_bias', None)