-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathpremodel.py
129 lines (105 loc) · 5.32 KB
/
premodel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import os
import sys
import argparse
import torch
import pickle
sys.path.append(os.getcwd())
import src.data.data as data
import src.data.config as cfg
import src.models.utils as model_utils
import src.train.batch as batch_utils
import src.interactive.functions as interactive
def set_inputs(input_event, data_loader, text_encoder):
categories = ['xWant', 'oWant', 'xIntent', 'xEffect']
prefix, suffix = data.atomic_data.do_example(text_encoder, input_event, None, True, None)
prefix_len = len(prefix) if len(prefix) <= data_loader.max_event else data_loader.max_event
batch = {'sequences': [], 'attention_mask': []}
for cate in categories:
XMB = torch.zeros(1, data_loader.max_event + 1).long().to(cfg.device)
XMB[:, :prefix_len] = torch.LongTensor(prefix[:prefix_len])
XMB[:, -1] = torch.LongTensor([text_encoder.encoder["<{}>".format(cate)]])
batch['sequences'].append(XMB)
batch['attention_mask'].append(data.atomic_data.make_attention_mask(XMB))
return batch
def get_atomic_embs(input_event, model, opt, data_loader, text_encoder):
with torch.no_grad():
batch = set_inputs(input_event, data_loader, text_encoder)
output = get_embs(batch, opt, model, data_loader, data_loader.max_event +
data.atomic_data.num_delimiter_tokens['category'],
data_loader.max_effect -
data.atomic_data.num_delimiter_tokens['category'])
return output
def get_embs(batch, opt, model, data_loader, start_idx, end_len):
output4 = []
for XMB, MMB in zip(batch['sequences'], batch['attention_mask']):
XMB = XMB[:, :start_idx]
MMB = MMB[:, :start_idx]
XMB = model_utils.prepare_position_embeddings(opt, data_loader.vocab_encoder, XMB.unsqueeze(-1))
output = model.transformer(XMB.unsqueeze(1), sequence_mask=MMB)
output4.append(output.squeeze(0)[-1])
return output4
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--device", type=str, default="cpu")
parser.add_argument("--model_file", type=str, default="pretrained_models/atomic_pretrained_model.pickle")
parser.add_argument("--sampling_algorithm", type=str, default="help")
parser.add_argument("--dataset", type=str, default='IEMOCAP')
args = parser.parse_args()
print(args)
if args.dataset == "IEMOCAP":
data1 = pickle.load(open('/data2/ljn/TRMSM/bert_data/IEMOCAP/IEMOCAP_data.pkl', 'rb'), encoding='utf-8')
train_data = data1['train']
test_data = data1['test']
train_utt = train_data[0]
test_utt = test_data[0]
elif args.dataset == "MELD":
data1 = pickle.load(open('/data2/ljn/TRMSM/bert_data/MELD/MELD_data.pkl', 'rb'), encoding='utf-8')
train_data, dev_data, test_data = data1[0], data1[1], data1[2]
train_utt = train_data[0]
dev_utt = dev_data[0]
test_utt = test_data[0]
elif args.dataset == "EmoryNLP":
data1 = pickle.load(open('/data2/ljn/TRMSM/bert_data/EmoryNLP/EmoryNLP_feature.pkl', 'rb'), encoding='utf-8')
train_data, dev_data, test_data = data1[0], data1[2], data1[1]
train_utt = train_data[0]
dev_utt = dev_data[0]
test_utt = test_data[0]
elif args.dataset == "DailyDialog":
data1 = pickle.load(open('/data2/ljn/TRMSM/bert_data/DailyDialog/DailyDialog_feature.pkl', 'rb'), encoding='utf-8')
train_data, dev_data, test_data = data1[0], data1[1], data1[2]
train_utt = train_data[0]
dev_utt = dev_data[0]
test_utt = test_data[0]
opt, state_dict = interactive.load_model_file(args.model_file)
data_loader, text_encoder = interactive.load_data("atomic", opt)
n_ctx = data_loader.max_event + data_loader.max_effect
n_vocab = len(text_encoder.encoder) + n_ctx
model = interactive.make_model(opt, n_vocab, n_ctx, state_dict)
if args.device != "cpu":
cfg.device = int(args.device)
cfg.do_gpu = True
torch.cuda.set_device(cfg.device)
model.cuda(cfg.device)
else:
cfg.device = "cpu"
def all_process(utt):
all_features = []
for conv in utt:
conv_feature = []
for u in conv:
u_feature = {}
emb_output = get_atomic_embs(u, model, opt, data_loader, text_encoder)
u_feature['xWant'] = emb_output[0].cpu().numpy()
u_feature['oWant'] = emb_output[1].cpu().numpy()
u_feature['xIntent'] = emb_output[2].cpu().numpy()
u_feature['xEffect'] = emb_output[3].cpu().numpy()
conv_feature.append(u_feature)
all_features.append(conv_feature)
return all_features
train_feature = all_process(train_utt)
test_feature = all_process(test_utt)
if args.dataset == 'MELD' or args.dataset == 'EmoryNLP' or args.dataset == 'DailyDialog':
dev_feature = all_process(dev_utt)
pickle.dump(dev_feature, open('/data2/ljn/TRMSM/bert_data/'+ args.dataset + '/' + args.dataset + '_edge_attr_dev.pkl', 'wb'))
pickle.dump(train_feature, open('/data2/ljn/TRMSM/bert_data/'+ args.dataset + '/' + args.dataset + '_edge_attr_train.pkl', 'wb'))
pickle.dump(test_feature, open('/data2/ljn/TRMSM/bert_data/' + args.dataset + '/' + args.dataset + '_edge_attr_test.pkl', 'wb'))