-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmask.py
84 lines (72 loc) · 3.44 KB
/
mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import torch
def build_mask_type1(utt_mask, spk_mask=None, bidirectional=False):
utt_mask = torch.matmul(utt_mask.unsqueeze(2), utt_mask.unsqueeze(1))
if bidirectional is False:
utt_mask = utt_mask.tril(0)
umask = utt_mask.eq(0)
if spk_mask is not None:
batch_size = spk_mask.size(0)
seq_len = spk_mask.size(1)
mask1 = spk_mask.unsqueeze(2).expand(batch_size, seq_len, seq_len)
mask2 = spk_mask.unsqueeze(1).expand(batch_size, seq_len, seq_len)
smask = torch.eq(mask1, mask2)
smask = torch.masked_fill(smask, umask, False)
smask = torch.eq(smask, False)
return umask, smask
return umask, None
def build_mixed_mask_prior(utt_mask, spk_mask=None, bidirectional=False):
# utt_mask: (bsz, slen)
utt_mask = torch.matmul(utt_mask.unsqueeze(2), utt_mask.unsqueeze(1))
if bidirectional is False:
utt_mask = utt_mask.tril(0)
umask = utt_mask.eq(0)
if spk_mask is not None:
batch_size = spk_mask.size(0)
seq_len = spk_mask.size(1)
mask1 = spk_mask.unsqueeze(2).expand(batch_size, seq_len, seq_len)
mask2 = spk_mask.unsqueeze(1).expand(batch_size, seq_len, seq_len)
smask_self = torch.eq(mask1, mask2)
smask_other = torch.eq(smask_self, False)
smask_self = torch.masked_fill(smask_self, umask, False)
smask_other = torch.masked_fill(smask_other, umask, False)
smask_self = torch.eq(smask_self, False)
smask_other = torch.eq(smask_other, False)
return umask, smask_self, smask_other
return umask, None, None
def build_mixed_mask_local(utt_mask, spk_mask=None, window=10, bidirectional=False):
# utt_mask: (bsz, slen)
utt_mask = torch.matmul(utt_mask.unsqueeze(2), utt_mask.unsqueeze(1))
utt_mask = utt_mask.tril(window)-utt_mask.tril(-window-1)
if bidirectional is False:
utt_mask = utt_mask.tril(0)
umask = utt_mask.eq(0)
if spk_mask is not None:
batch_size = spk_mask.size(0)
seq_len = spk_mask.size(1)
mask1 = spk_mask.unsqueeze(2).expand(batch_size, seq_len, seq_len)
mask2 = spk_mask.unsqueeze(1).expand(batch_size, seq_len, seq_len)
smask_self = torch.eq(mask1, mask2)
smask_other = torch.eq(smask_self, False)
smask_self = torch.masked_fill(smask_self, umask, False)
smask_other = torch.masked_fill(smask_other, umask, False)
smask_self = torch.eq(smask_self, False)
smask_other = torch.eq(smask_other, False)
return umask, smask_self, smask_other
return umask, None, None
def build_mixed_mask_post(utt_mask, spk_mask):
utt_mask = torch.matmul(utt_mask.unsqueeze(2), utt_mask.unsqueeze(1))
umask = utt_mask.triu(0)
umask = umask.eq(0)
if spk_mask is not None:
batch_size = spk_mask.size(0)
seq_len = spk_mask.size(1)
mask1 = spk_mask.unsqueeze(2).expand(batch_size, seq_len, seq_len)
mask2 = spk_mask.unsqueeze(1).expand(batch_size, seq_len, seq_len)
smask_self = torch.eq(mask1, mask2)
smask_other = torch.eq(smask_self, False)
smask_self = torch.masked_fill(smask_self, umask, False)
smask_other = torch.masked_fill(smask_other, umask, False)
smask_self = torch.eq(smask_self, False)
smask_other = torch.eq(smask_other, False)
return umask, smask_self, smask_other
return umask, None, None