-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathgnn_train.py
414 lines (351 loc) · 17.7 KB
/
gnn_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import random
import time
import argparse
import torch
import pickle
import numpy as np
import torch.nn as nn
from torch.utils.data import DataLoader
from torch.utils.data.sampler import SubsetRandomSampler
from torch.nn.utils import clip_grad_norm_
from gnn_dataset import BaseDataset, collate_fn, collate_fn_batch
from gnn import MentalModel, BatchMentalModel
from gnn_for_meld_emorynlp import BatchMentalModelResidual
from transformers import AutoTokenizer
from transformers import AdamW, get_linear_schedule_with_warmup
from transformers import get_constant_schedule, get_constant_schedule_with_warmup
from sklearn.metrics import accuracy_score, f1_score, classification_report
def get_train_valid_sampler(trainset, valid=0.1):
size = len(trainset)
idx = list(range(size))
split = int(valid * size)
return SubsetRandomSampler(idx[split:]), SubsetRandomSampler(idx[:split])
def seed_worker(worker_id):
worker_seed = torch.initial_seed() % 2 ** 32
np.random.seed(worker_seed)
random.seed(worker_seed)
def get_loaders(dataset_name, hip, batch_size=8, pretrained_model='bert-base-uncased', valid=0.1, shuffle=True):
tokenizer = AutoTokenizer.from_pretrained(pretrained_model)
trainset = BaseDataset(dataset_name, hip, 'train', tokenizer)
testset = BaseDataset(dataset_name, hip, 'test', tokenizer)
if dataset_name == 'IEMOCAP':
train_sampler, valid_sampler = get_train_valid_sampler(trainset, valid)
train_loader = DataLoader(trainset,
batch_size=1,
sampler=train_sampler,
num_workers=0,
collate_fn=collate_fn,
worker_init_fn=seed_worker)
dev_loader = DataLoader(trainset, batch_size=1, sampler=valid_sampler, num_workers=0, collate_fn=collate_fn, worker_init_fn=seed_worker)
test_loader = DataLoader(testset, batch_size=1, shuffle=shuffle, num_workers=0, collate_fn=collate_fn, worker_init_fn=seed_worker)
else:
devset = BaseDataset(dataset_name, hip, 'dev', tokenizer)
train_loader = DataLoader(trainset, batch_size=batch_size, shuffle=shuffle, num_workers=0, collate_fn=collate_fn_batch, worker_init_fn=seed_worker)
dev_loader = DataLoader(devset, batch_size=batch_size, shuffle=shuffle, num_workers=0, collate_fn=collate_fn_batch, worker_init_fn=seed_worker)
test_loader = DataLoader(testset, batch_size=batch_size, shuffle=shuffle, num_workers=0, collate_fn=collate_fn_batch, worker_init_fn=seed_worker)
return train_loader, dev_loader, test_loader
def train(dataset_name, model, loss_func, trainloader, devloader, testloader, n_epochs, optimizer,
scheduler, training_step, model_path, log_path, metric_path, use_gpu, window, mode):
model.train()
f = open(log_path, 'a+', encoding='utf-8')
train_loss_list = []
train_f1_list = []
dev_f1_list = []
test_f1_list = []
best_fscore = 0
best_mf1 = 0
best_accuracy = 0
best_report = None
best_test_fscore = 0
best_test_mf1 = 0
best_test_accuracy = 0
best_test_report = None
step = 0
early_stopping_step = 0
for epoch in range(n_epochs):
losses = []
preds = []
labels = []
masks = []
num_utt = 0
print('Epoch {} start: '.format(epoch + 1))
if step > training_step:
break
start_time = time.time()
for data in trainloader:
# (clen, slen), (clen)
textf, wrdm, label, uttm, spkm, edge_index, edge_attr, _, _ = data
if dataset_name == 'IEMOCAP':
if use_gpu:
textf = textf.cuda()
wrdm = wrdm.cuda()
uttm = uttm.cuda()
spkm = spkm.cuda()
edge_index = edge_index.cuda()
edge_attr = edge_attr.cuda()
logits = model(textf, wrdm, uttm, spkm, window, mode, edge_index, edge_attr, residual=False)
else:
conv_len = [int(torch.sum(um).item()) for um in uttm] # torch.sum(uttm, dim=1).numpy().tolist()
if dataset_name == 'DailyDialog':
logits = model(textf, wrdm, conv_len, uttm, spkm, window, mode, edge_index, edge_attr, use_gpu, residual=False)
else:
logits = model(textf, wrdm, conv_len, edge_index, edge_attr, use_gpu)
# logits = model(textf, wrdm, conv_len, edge_index, edge_attr, use_gpu)
label = torch.cat(label, dim=0)
if use_gpu:
label = label.cuda()
# loss = loss_func(torch.log_softmax(logits, dim=-1), label)
loss = loss_func(logits, label)
model.zero_grad()
loss.backward()
clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
scheduler.step()
pred_ = torch.argmax(torch.softmax(logits, dim=-1), dim=1)
preds.append(pred_.cpu().numpy())
labels.append(label.data.cpu().numpy())
losses.append(loss.item() * label.size(0))
num_utt += label.size(0)
step += 1
if step > training_step:
break
preds = np.concatenate(preds)
labels = np.concatenate(labels)
avg_loss = np.round(np.sum(losses) / num_utt, 4)
avg_accuracy = round(accuracy_score(labels, preds) * 100, 5)
if dataset_name == 'DailyDialog':
avg_fscore = round(f1_score(labels, preds, labels=[0, 2, 3, 4, 5, 6], average='micro') * 100, 5)
else:
avg_fscore = round(f1_score(labels, preds, average='weighted') * 100, 5)
train_mf1 = round(f1_score(labels, preds, average='macro') * 100, 5)
dev_accuracy, dev_fscore, dev_mf, dev_reports = evaluate(dataset_name, model, devloader, use_gpu, window=window, mode=mode)
test_accuracy, test_fscore, test_mf, test_reports = evaluate(dataset_name, model, testloader, use_gpu, window=window, mode=mode)
if dev_fscore > best_fscore:
best_fscore = dev_fscore
best_mf1 = dev_mf
best_accuracy = dev_accuracy
best_report = dev_reports
best_test_fscore = test_fscore
best_test_mf1 = test_mf
best_test_accuracy = test_accuracy
best_test_report = test_reports
early_stopping_step = 0
# torch.save(model, model_path)
else:
early_stopping_step += 1
train_loss_list.append(avg_loss)
train_f1_list.append(avg_fscore)
dev_f1_list.append(dev_fscore)
test_f1_list.append(test_fscore)
log = 'Train: Epoch {} Loss {}, ACC {}, F1 {}, mF {}'.format(epoch + 1, avg_loss,
avg_accuracy, avg_fscore, train_mf1)
print(log)
f.write(log + '\n')
log = 'Validation: ACC {}, F1 {}, mF {}'.format(dev_accuracy, dev_fscore, dev_mf)
print(log)
f.write(log + '\n')
log = 'Test: ACC {}, F1 {}, mF {}'.format(test_accuracy, test_fscore, test_mf)
print(log)
f.write(log + '\n')
print('Epoch {} finished. Elapse {}'.format(epoch + 1, round(time.time() - start_time, 4)))
if early_stopping_step == 10:
break
print('----------------------------------------------')
f.write('----------------------------------------------')
log = '\n\n[DEV] best ACC {}, F1 {}, mF {}'.format(best_accuracy, best_fscore, best_mf1)
f.write(log + '\n')
print(log)
f.write(best_report)
log = '[TEST] best ACC {}, F1 {}, mF {}'.format(best_test_accuracy, best_test_fscore, best_test_mf1)
f.write(log + '\n')
print(log)
f.write(best_test_report)
f.write('----------------------------------------------\n')
f.close()
dump_data = [train_loss_list, train_f1_list, dev_f1_list, test_f1_list]
pickle.dump(dump_data, open(metric_path, 'wb'))
def evaluate(dataset_name, model, dataloader, use_gpu, window, mode):
model.eval()
preds = []
labels = []
with torch.no_grad():
for data in dataloader:
textf, wrdm, label, uttm, spkm, edge_index, edge_attr, _, _ = data
if dataset_name == 'IEMOCAP':
if use_gpu:
textf = textf.cuda()
wrdm = wrdm.cuda()
uttm = uttm.cuda()
spkm = spkm.cuda()
edge_index = edge_index.cuda()
edge_attr = edge_attr.cuda()
logits = model(textf, wrdm, uttm, spkm, window, mode, edge_index, edge_attr, residual=False)
else:
conv_len = [int(torch.sum(um).item()) for um in uttm] # torch.sum(uttm, dim=1).numpy().tolist()
if dataset_name == 'DailyDialog':
logits = model(textf, wrdm, conv_len, uttm, spkm, window, mode, edge_index, edge_attr, use_gpu, residual=False)
else:
logits = model(textf, wrdm, conv_len, edge_index, edge_attr, use_gpu)
# logits = model(textf, wrdm, conv_len, edge_index, edge_attr, use_gpu)
label = torch.cat(label, dim=0)
pred_ = torch.argmax(torch.softmax(logits, dim=1), dim=1)
preds.append(pred_.cpu().numpy())
labels.append(label.data.numpy())
preds = np.concatenate(preds)
labels = np.concatenate(labels)
avg_accuracy = round(accuracy_score(labels, preds) * 100, 5)
if dataset_name == 'DailyDialog':
avg_fscore = round(f1_score(labels, preds, labels=[0, 2, 3, 4, 5, 6], average='micro') * 100, 5)
report_classes = classification_report(labels, preds, labels=[0, 2, 3, 4, 5, 6], digits=4)
else:
avg_fscore = round(f1_score(labels, preds, average='weighted') * 100, 5)
report_classes = classification_report(labels, preds, digits=4)
mf1 = round(f1_score(labels, preds, average='macro') * 100, 5)
model.train()
return avg_accuracy, avg_fscore, mf1, report_classes
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-dataset_name', type=str, default='IEMOCAP')
parser.add_argument('-hip', type=int, default=1)
parser.add_argument('-valid', type=float, default=0.1)
parser.add_argument('-batch_size', type=int, default=8)
parser.add_argument('-lr', type=float, default=1e-5)
parser.add_argument('-l2', type=float, default=0.)
parser.add_argument('-finetune_lr', type=float, default=1e-5)
parser.add_argument('-normal_lr', type=float, default=1e-4)
parser.add_argument('-n_epochs', type=int, default=50)
parser.add_argument('-warmup_step', type=int, default=1000)
parser.add_argument('-training_step', type=int, default=10000)
parser.add_argument('-use_gpu', type=bool, default=True)
parser.add_argument('-schedule', type=str, default='linear')
parser.add_argument('-seed', type=int, default=7)
parser.add_argument('-pretrain', type=str, default='roberta-large')
parser.add_argument('-encoder_mode', type=str, default='maxpooling')
parser.add_argument('-sent_dim', type=int, default=300)
parser.add_argument('-tr_ff_dim', type=int, default=300)
parser.add_argument('-tr_nhead', type=int, default=6)
parser.add_argument('-tr_dropout', type=float, default=0.1)
parser.add_argument('-tr_num_layer', type=int, default=6)
parser.add_argument('-num_block', type=int, default=3)
parser.add_argument('-max_len', type=int, default=120)
parser.add_argument('-attn_mask', type=int, default=1)
parser.add_argument('-bidirectional', type=int, default=1)
parser.add_argument('-window', type=int, default=10)
parser.add_argument('-mode', type=str, default='uso')
parser.add_argument('-att_type', type=str, default='par')
parser.add_argument('-cn_nhead', type=int, default=6)
parser.add_argument('-cn_ff_dim', type=int, default=600)
parser.add_argument('-cn_dropout', type=float, default=0.1)
parser.add_argument('-edge_dim', type=int, default=300)
parser.add_argument('-bias', type=int, default=0)
parser.add_argument('-cn_num_layer', type=int, default=1)
parser.add_argument('-edge_mapping', type=int, default=1)
parser.add_argument('-beta', type=int, default=1)
parser.add_argument('-root_weight', type=int, default=1)
parser.add_argument('-residual_type', type=str, default='none')
parser.add_argument('-choice', type=str, default='cn')
parser.add_argument('-index', type=int, default=1)
args = parser.parse_args()
print(args)
dataset_name = args.dataset_name
model_index = str(args.index)
model_dir = dataset_name + '_C/model'
log_dir = dataset_name + '_C/logs/log'
metric_dir = dataset_name + '_C/logs/metric'
model_path = model_dir + model_index + '.pkl'
log_path = log_dir + model_index + '.txt'
metric_path = metric_dir + model_index + '.pkl'
f = open(log_path, 'a+', encoding='utf-8')
f.write(str(args) + '\n\n')
f.close()
seed = args.seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
# torch.backends.cudnn.enabled = False
# torch.use_deterministic_algorithms(True)
batch_size = args.batch_size
n_epochs = args.n_epochs
lr = args.lr
l2 = args.l2
use_gpu = args.use_gpu
if dataset_name == 'IEMOCAP':
num_class = 6
else:
num_class = 7
if args.bidirectional == 0:
bidirectional = False
else:
bidirectional = True
if args.attn_mask == 0:
attn_mask = False
else:
attn_mask = True
if args.bias == 0:
bias = False
else:
bias = True
if args.edge_mapping == 0:
edge_mapping = False
else:
edge_mapping = True
if args.beta == 0:
beta = False
else:
beta = True
if args.root_weight == 0:
root_weight = False
else:
root_weight = True
choice = args.choice
if dataset_name == 'IEMOCAP':
model = MentalModel(args.pretrain, args.encoder_mode, args.sent_dim, args.tr_nhead,
args.tr_ff_dim, args.tr_dropout, attn_mask, args.tr_num_layer,
args.max_len, num_class, bidirectional, args.num_block,
args.cn_nhead, args.cn_ff_dim, args.cn_dropout, args.edge_dim, bias,
args.cn_num_layer, edge_mapping, beta, root_weight, choice)
elif dataset_name == 'DailyDialog':
model = BatchMentalModel(args.pretrain, args.encoder_mode, args.sent_dim, args.tr_nhead,
args.tr_ff_dim, args.tr_dropout, attn_mask, args.tr_num_layer,
args.max_len, num_class, bidirectional, args.num_block,
args.cn_nhead, args.cn_ff_dim, args.cn_dropout, args.edge_dim, bias,
args.cn_num_layer, edge_mapping, beta, root_weight, choice)
else:
model = BatchMentalModelResidual(args.pretrain, args.encoder_mode, args.sent_dim,
args.cn_ff_dim, args.cn_nhead, args.cn_dropout,
args.edge_dim, num_class, bias, args.cn_num_layer,
edge_mapping, beta, root_weight, args.residual_type)
if use_gpu:
model = model.cuda()
train_loader, dev_loader, test_loader = get_loaders(dataset_name, args.hip, batch_size, args.pretrain, args.valid, True)
loss_func = nn.CrossEntropyLoss(reduction='mean')
# if choice == 'both':
# param_group = [{'params': model.uttrenc.encoder.parameters(), 'lr': args.finetune_lr},
# {'params': list(model.uttrenc.mapping.parameters()) + list(model.tcn.parameters()) +
# list(model.convenc.parameters()) + list(model.classifier.parameters()), 'lr': args.normal_lr}]
# elif choice == 'tr':
# param_group = [{'params': model.uttrenc.encoder.parameters(), 'lr': args.finetune_lr},
# {'params': list(model.uttrenc.mapping.parameters()) + list(model.convenc.parameters()) +
# list(model.classifier.parameters()), 'lr': args.normal_lr}]
# elif choice == 'cn':
# param_group = [{'params': model.uttrenc.encoder.parameters(), 'lr': args.finetune_lr},
# {'params': list(model.uttrenc.mapping.parameters()) + list(model.tcn.parameters()) +
# list(model.classifier.parameters()), 'lr': args.normal_lr}]
# else:
# raise NotImplementedError()
# optimizer = AdamW(param_group, weight_decay=l2)
optimizer = AdamW(model.parameters(), lr=lr, weight_decay=l2)
if args.schedule == 'linear':
scheduler = get_linear_schedule_with_warmup(optimizer, args.warmup_step, args.training_step)
elif args.schedule == 'warmup':
scheduler = get_constant_schedule_with_warmup(optimizer, args.warmup_step)
else:
scheduler = get_constant_schedule(optimizer)
train(dataset_name, model, loss_func, train_loader, dev_loader, test_loader, n_epochs, optimizer, scheduler,
args.training_step, model_path, log_path, metric_path, use_gpu, window=args.window, mode=args.mode)
if __name__ == '__main__':
main()