-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
125 lines (104 loc) · 3.59 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import config
import torch
import torch.optim as optim
import time
from model import YOLOv3
from tqdm import tqdm
from utils import (
mean_average_precision,
cells_to_bboxes,
get_evaluation_bboxes,
save_checkpoint,
load_checkpoint,
check_class_accuracy,
get_loaders,
plot_couple_examples
)
from loss import YoloLoss
import warnings
warnings.filterwarnings("ignore")
torch.backends.cudnn.benchmark = True
PATH = "weights/model_sample.pt"
def ti(t1, t2):
if t2-t1 > 60:
m = int((t2-t1)//60)
s = (t2-t1) % 60
if m > 1:
print("Time required:", m, "minutes %.3f" % s, "seconds")
else:
print("Time required:", m, "minute %.3f" % s, "seconds")
else:
print("Time required:%.3f" % (t2-t1), "seconds")
def train_fn(train_loader, model, optimizer, loss_fn, scaler, scaled_anchors):
loop = tqdm(train_loader, leave=True)
losses = []
for batch_idx, (x, y) in enumerate(loop):
x = x.to(config.DEVICE)
y0, y1, y2 = (
y[0].to(config.DEVICE),
y[1].to(config.DEVICE),
y[2].to(config.DEVICE),
)
with torch.cuda.amp.autocast():
out = model(x)
loss = (
loss_fn(out[0], y0, scaled_anchors[0])
+ loss_fn(out[1], y1, scaled_anchors[1])
+ loss_fn(out[2], y2, scaled_anchors[2])
)
losses.append(loss.item())
optimizer.zero_grad()
scaler.scale(loss).backward()
scaler.step(optimizer)
scaler.update()
# update progress bar
mean_loss = sum(losses) / len(losses)
loop.set_postfix(loss=mean_loss)
def main():
model = YOLOv3(num_classes=config.NUM_CLASSES).to(config.DEVICE)
optimizer = optim.Adam(
model.parameters(), lr=config.LEARNING_RATE, weight_decay=config.WEIGHT_DECAY
)
loss_fn = YoloLoss()
scaler = torch.cuda.amp.GradScaler()
train_loader, test_loader, train_eval_loader = get_loaders(
train_csv_path="sample100.csv", test_csv_path="sample10.csv"
)
if config.LOAD_MODEL:
load_checkpoint(
config.CHECKPOINT_FILE, model, optimizer, config.LEARNING_RATE
)
scaled_anchors = (
torch.tensor(config.ANCHORS)
* torch.tensor(config.S).unsqueeze(1).unsqueeze(1).repeat(1, 3, 2)
).to(config.DEVICE)
for epoch in range(config.NUM_EPOCHS):
t0=time.time()
print('Epoch:', 1+epoch)
train_fn(train_loader, model, optimizer,
loss_fn, scaler, scaled_anchors)
if epoch > 0 and epoch % 3 == 0:
check_class_accuracy(model, test_loader,
threshold=config.CONF_THRESHOLD)
pred_boxes, true_boxes = get_evaluation_bboxes(
test_loader,
model,
iou_threshold=config.NMS_IOU_THRESH,
anchors=config.ANCHORS,
threshold=config.CONF_THRESHOLD,
)
mapval = mean_average_precision(
pred_boxes,
true_boxes,
iou_threshold=config.MAP_IOU_THRESH,
box_format="midpoint",
num_classes=config.NUM_CLASSES,
)
print(f"MAP: {mapval.item()}")
model.train()
torch.save(model.state_dict(), PATH)
t1=time.time()
ti(t0,t1)
print('Model Saved at:', str(PATH), '\n')
if __name__ == "__main__":
main()