-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbvh.h
281 lines (259 loc) · 7.74 KB
/
bvh.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#ifndef BVH_H
#define BVH_H
#include "access.h"
#include <cmath>
#include <initializer_list>
#include <algorithm>
#include <vector>
using namespace v3d;
//namespace objects
//{
//class object;
//class triangle;
//}
namespace bvh_n
{
class bvh : public access_n::access
{
public:
struct volume
{
volume(point p1, point p2, UInt64 no, objects::object ** o, UInt64 ind) : numObjs(no), index(ind)
{
points = new point[2];
points[0] = point(std::max(p1.x, p2.x), std::max(p1.y, p2.y), std::max(p1.z, p2.z));
points[1] = point(std::min(p1.x, p2.x), std::min(p1.y, p2.y), std::min(p1.z, p2.z));
v = new point[8];
v[0] = point(points[1].x, points[0].y, points[0].z);
v[1] = point(points[0].x, points[0].y, points[0].z);
v[2] = point(points[1].x, points[1].y, points[0].z);
v[3] = point(points[0].x, points[1].y, points[0].z);
v[4] = point(points[1].x, points[0].y, points[1].z);
v[5] = point(points[0].x, points[0].y, points[1].z);
v[6] = point(points[1].x, points[1].y, points[1].z);
v[7] = point(points[0].x, points[1].y, points[1].z);
obj = new objects::object*[numObjs];
for(UInt64 i = 0; i < numObjs; i++)
{
obj[i] = o[i];
}
mid = (points[0]+points[1])*.5;
}
volume(volume v1, volume v2, UInt64 ind) : obj(nullptr), numObjs(0), index(ind)
{
points = new point[2];
points[0] = point(std::max(v1.points[0].x, v2.points[0].x),
std::max(v1.points[0].y, v2.points[0].y),
std::max(v1.points[0].z, v2.points[0].z));
points[1] = point(std::min(v1.points[1].x, v2.points[1].x),
std::min(v1.points[1].y, v2.points[1].y),
std::min(v1.points[1].z, v2.points[1].z));
v = new point[8];
v[0] = point(points[1].x, points[0].y, points[0].z);
v[1] = point(points[0].x, points[0].y, points[0].z);
v[2] = point(points[1].x, points[1].y, points[0].z);
v[3] = point(points[0].x, points[1].y, points[0].z);
v[4] = point(points[1].x, points[0].y, points[1].z);
v[5] = point(points[0].x, points[0].y, points[1].z);
v[6] = point(points[1].x, points[1].y, points[1].z);
v[7] = point(points[0].x, points[1].y, points[1].z);
mid = (points[0]+points[1])*.5;
}
volume() : obj(nullptr), numObjs(0), index(0)
{
points = new point[2];
points[0] = point(INVALID_COORDINATE, 0, 0);
points[1] = point(INVALID_COORDINATE, 0, 0);
v = new point[8];
v[0] = point(INVALID_COORDINATE, 0, 0);
v[1] = point(INVALID_COORDINATE, 0, 0);
v[2] = point(INVALID_COORDINATE, 0, 0);
v[3] = point(INVALID_COORDINATE, 0, 0);
v[4] = point(INVALID_COORDINATE, 0, 0);
v[5] = point(INVALID_COORDINATE, 0, 0);
v[6] = point(INVALID_COORDINATE, 0, 0);
v[7] = point(INVALID_COORDINATE, 0, 0);
mid = point(INVALID_COORDINATE, 0, 0);
}
volume(const volume & other)
{
points = new point[2];
v = new point[8];
obj = new objects::object*[other.numObjs];
for(UInt64 i = 0; i < 2; i++)
{
points[i] = other.points[i];
}
for(UInt64 i = 0; i < 8; i++)
{
v[i] = other.v[i];
}
for(UInt64 i = 0; i < other.numObjs; i++)
{
obj[i] = other.obj[i];
}
mid = other.mid;
numObjs = other.numObjs;
index = other.index;
}
volume & operator=(const volume & other)
{
if(v)
delete[] v;
if(obj)
delete[] obj;
if(points)
delete[] points;
//std::cout << "its called" << std::endl;
points = new point[2];
v = new point[8];
obj = new objects::object*[other.numObjs];
for(UInt64 i = 0; i < 2; i++)
{
points[i] = other.points[i];
}
for(UInt64 i = 0; i < 8; i++)
{
v[i] = other.v[i];
}
for(UInt64 i = 0; i < other.numObjs; i++)
{
obj[i] = other.obj[i];
}
mid = other.mid;
numObjs = other.numObjs;
index = other.index;
}
~volume()
{
if(points)
{
delete[] points;
points = nullptr;
}
if(v)
{
delete[] v;
v = nullptr;
}
if(obj)
delete[] obj;
}
bool intersects(ray3d r) const
{
bool doesIntersect = false;
vec3d i(1,0,0);
vec3d j(0,1,0);
vec3d k(0,0,1);
vec3d dir = r.direction;
//first check if the ray start is in the volume; this means it intersects
if(points[0].x >= r.start.x && points[0].y >= r.start.y && points[0].z >= r.start.z
&& points[1].x <= r.start.x && points[1].y <= r.start.y && points[1].z <= r.start.z)
{
return true;
}
//we assume outward facing normals
//we only want to get the visible faces to preform collision detection on, make sure we can "see them" with an angle test
if(i.dot(dir) <= 0) //if outward facing normal of face and ray direction form an obtuse angle, then the face is visible
{
//posx 3 1 7 5
doesIntersect = doesIntersect || rectangle(vec3d(v[3], v[1]), vec3d(v[5], v[1]), v[1], i).intersects(r);
}
else
{
//negx 2 0 6 4
doesIntersect = doesIntersect || rectangle(vec3d(v[4], v[6]), vec3d(v[2], v[6]), v[6], -1*i).intersects(r);
}
if(j.dot(dir) <= 0)
{
//posy 0 1 4 5
doesIntersect = doesIntersect || rectangle(vec3d(v[0], v[1]), vec3d(v[5], v[1]), v[1], j).intersects(r);
}
else
{
//negy 2 3 6 7
doesIntersect = doesIntersect || rectangle(vec3d(v[2], v[6]), vec3d(v[7], v[6]), v[6], -1*j).intersects(r);
}
if(k.dot(dir) <= 0)
{
//posz 0 1 2 3
doesIntersect = doesIntersect || rectangle(vec3d(v[0], v[1]), vec3d(v[3], v[1]), v[1], k).intersects(r);
}
else
{
//negz 4 5 6 7
doesIntersect = doesIntersect || rectangle(vec3d(v[4], v[6]), vec3d(v[7], v[6]), v[6], -1*k).intersects(r);
}
return doesIntersect;
//return true;
};
void print() const
{
std::cout << "Volume [ "; pp(points[0]); std::cout << " "; pp(points[1]); std::cout << " ]" << std::endl;
}
point * points; //0th is toprightbackmost //1st is bottomleftfrontmost
point * v; //vertices
objects::object ** obj;
point mid;
UInt64 numObjs;
UInt64 index;
struct rectangle
{
vec3d side1;
vec3d side2;
point start;
vec3d normal;
rectangle(vec3d s1, vec3d s2, point s, vec3d n) : side1(s1), side2(s2), start(s), normal(n) {};
rectangle() : side1(vec3d()), side2(vec3d()), start(point()), normal(vec3d()) {};
void print()
{
std::cout << "|";
pp(start);
pv(side1+(vec3d)start); std::cout << std::endl;
pv(side2+(vec3d)start);
pv(side1+side2+(vec3d)start); std::cout << "|" << std::endl;
}
inline bool intersects(ray3d r)
{
if(r.direction.dot(normal))
{
F64 t = vec3d(start, r.start).dot(normal)/r.direction.dot(normal);
point pos = t*r.direction+r.start;
vec3d u1 = side1.unit();
vec3d u2 = side2.unit();
F64 maxX = (side1+side2).dot(u1);
F64 maxY = (side1+side2).dot(u2);
F64 actX = (vec3d(pos, start)).dot(u1);
F64 actY = (vec3d(pos, start)).dot(u2);
if(t >= 0)
{
if(0 <= actX && actX <= maxX && 0 <= actY && actY <= maxY)
{
return true;
}
}
}
return false;
};
};
};
bvh(std::list<objects::object*> & objs, UInt64 no);
//bvh(const bvh & other);
bvh() : heir(std::vector<volume>()) {};
~bvh() = default;
objects::object * closestIntersection(ray3d r) const;
objects::object * closestWithOmit(ray3d r, objects::object * obj) const;
virtual objects::object * operator()(ray3d r) const override { return closestIntersection(r); };
virtual objects::object * operator()(ray3d r, objects::object * obj) const override { return closestWithOmit(r, obj); };
virtual void * getVolumes() override { return &heir; };
private:
std::vector<objects::object*> boundless;
std::vector<volume> heir;
UInt64 numObjs;
void buildHeir(std::vector<objects::object**> & objs, SInt64 index, SInt64 objsBeg, SInt64 objsEnd);
objects::object * closestIntersection_(ray3d r) const;
objects::object * closestWithOmit_(ray3d r, objects::object * obj) const;
};
}
#define BVH_H_END_
#endif