-
Notifications
You must be signed in to change notification settings - Fork 71
/
Copy pathdata_processing.py
545 lines (440 loc) · 23.5 KB
/
data_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
import pandas as pd
from matplotlib import pyplot as plt
import numpy as np
from sklearn.preprocessing import MinMaxScaler
import random
MAXLIFE = 120
SCALE = 1
RESCALE = 1
true_rul = []
test_engine_id = 0
training_engine_id = 0
def kink_RUL(cycle_list, max_cycle):
'''
Piecewise linear function with zero gradient and unit gradient
^
|
MAXLIFE |-----------
| \
| \
| \
| \
| \
|----------------------->
'''
knee_point = max_cycle - MAXLIFE
kink_RUL = []
stable_life = MAXLIFE
for i in range(0, len(cycle_list)):
if i < knee_point:
kink_RUL.append(MAXLIFE)
else:
tmp = kink_RUL[i - 1] - (stable_life / (max_cycle - knee_point))
kink_RUL.append(tmp)
return kink_RUL
def compute_rul_of_one_id(FD00X_of_one_id, max_cycle_rul=None):
'''
Enter the data of an engine_id of train_FD001 and output the corresponding RUL (remaining life) of these data.
type is list
'''
cycle_list = FD00X_of_one_id['cycle'].tolist()
if max_cycle_rul is None:
max_cycle = max(cycle_list) # Failure cycle
else:
max_cycle = max(cycle_list) + max_cycle_rul
# print(max(cycle_list), max_cycle_rul)
# return kink_RUL(cycle_list,max_cycle)
return kink_RUL(cycle_list, max_cycle)
def compute_rul_of_one_file(FD00X, id='engine_id', RUL_FD00X=None):
'''
Input train_FD001, output a list
'''
rul = []
# In the loop train, each id value of the 'engine_id' column
if RUL_FD00X is None:
for _id in set(FD00X[id]):
rul.extend(compute_rul_of_one_id(FD00X[FD00X[id] == _id]))
return rul
else:
rul = []
for _id in set(FD00X[id]):
# print("#### id ####", int(RUL_FD00X.iloc[_id - 1]))
true_rul.append(int(RUL_FD00X.iloc[_id - 1]))
rul.extend(compute_rul_of_one_id(FD00X[FD00X[id] == _id], int(RUL_FD00X.iloc[_id - 1])))
return rul
def get_CMAPSSData(save=False, save_training_data=True, save_testing_data=True, files=[1, 2, 3, 4, 5],
min_max_norm=False):
'''
:param save: switch to load the already preprocessed data or begin preprocessing of raw data
:param save_training_data: same functionality as 'save' but for training data only
:param save_testing_data: same functionality as 'save' but for testing data only
:param files: to indicate which sub dataset needed to be loaded for operations
:param min_max_norm: switch to enable min-max normalization
:return: function will save the preprocessed training and testing data as numpy objects
'''
if save == False:
return np.load("normalized_train_data.npy"), np.load("normalized_test_data.npy"), pd.read_csv(
'normalized_train_data.csv', index_col=[0]), pd.read_csv('normalized_test_data.csv', index_col=[0])
column_name = ['engine_id', 'cycle', 'setting1', 'setting2', 'setting3', 's1', 's2', 's3',
's4', 's5', 's6', 's7', 's8', 's9', 's10', 's11', 's12', 's13', 's14',
's15', 's16', 's17', 's18', 's19', 's20', 's21']
if save_training_data: ### Training ###
train_FD001 = pd.read_table("./CMAPSSData/train_FD001.txt", header=None, delim_whitespace=True)
train_FD002 = pd.read_table("./CMAPSSData/train_FD002.txt", header=None, delim_whitespace=True)
train_FD003 = pd.read_table("./CMAPSSData/train_FD003.txt", header=None, delim_whitespace=True)
train_FD004 = pd.read_table("./CMAPSSData/train_FD004.txt", header=None, delim_whitespace=True)
train_FD001.columns = column_name
train_FD002.columns = column_name
train_FD003.columns = column_name
train_FD004.columns = column_name
previous_len = 0
frames = []
for data_file in ['train_FD00' + str(i) for i in files]: # load subdataset by subdataset
#### standard normalization ####
mean = eval(data_file).iloc[:, 2:len(list(eval(data_file)))].mean()
std = eval(data_file).iloc[:, 2:len(list(eval(data_file)))].std()
std.replace(0, 1, inplace=True)
# print("std", std)
################################
if min_max_norm:
scaler = MinMaxScaler()
eval(data_file).iloc[:, 2:len(list(eval(data_file)))] = scaler.fit_transform(
eval(data_file).iloc[:, 2:len(list(eval(data_file)))])
else:
eval(data_file).iloc[:, 2:len(list(eval(data_file)))] = (eval(data_file).iloc[:, 2:len(
list(eval(data_file)))] - mean) / std
eval(data_file)['RUL'] = compute_rul_of_one_file(eval(data_file))
current_len = len(eval(data_file))
# print(eval(data_file).index)
eval(data_file).index = range(previous_len, previous_len + current_len)
previous_len = previous_len + current_len
# print(eval(data_file).index)
frames.append(eval(data_file))
print(data_file)
train = pd.concat(frames)
global training_engine_id
training_engine_id = train['engine_id']
train = train.drop('engine_id', 1)
train = train.drop('cycle', 1)
# if files[0] == 1 or files[0] == 3:
# train = train.drop('setting3', 1)
# train = train.drop('s18', 1)
# train = train.drop('s19', 1)
train_values = train.values * SCALE
np.save('normalized_train_data.npy', train_values)
train.to_csv('normalized_train_data.csv')
###########
else:
train = pd.read_csv('normalized_train_data.csv', index_col=[0])
train_values = train.values
if save_testing_data: ### testing ###
test_FD001 = pd.read_table("./CMAPSSData/test_FD001.txt", header=None, delim_whitespace=True)
test_FD002 = pd.read_table("./CMAPSSData/test_FD002.txt", header=None, delim_whitespace=True)
test_FD003 = pd.read_table("./CMAPSSData/test_FD003.txt", header=None, delim_whitespace=True)
test_FD004 = pd.read_table("./CMAPSSData/test_FD004.txt", header=None, delim_whitespace=True)
test_FD001.columns = column_name
test_FD002.columns = column_name
test_FD003.columns = column_name
test_FD004.columns = column_name
# load RUL data
RUL_FD001 = pd.read_table("./CMAPSSData/RUL_FD001.txt", header=None, delim_whitespace=True)
RUL_FD002 = pd.read_table("./CMAPSSData/RUL_FD002.txt", header=None, delim_whitespace=True)
RUL_FD003 = pd.read_table("./CMAPSSData/RUL_FD003.txt", header=None, delim_whitespace=True)
RUL_FD004 = pd.read_table("./CMAPSSData/RUL_FD004.txt", header=None, delim_whitespace=True)
RUL_FD001.columns = ['RUL']
RUL_FD002.columns = ['RUL']
RUL_FD003.columns = ['RUL']
RUL_FD004.columns = ['RUL']
previous_len = 0
frames = []
for (data_file, rul_file) in [('test_FD00' + str(i), 'RUL_FD00' + str(i)) for i in files]:
mean = eval(data_file).iloc[:, 2:len(list(eval(data_file)))].mean()
std = eval(data_file).iloc[:, 2:len(list(eval(data_file)))].std()
std.replace(0, 1, inplace=True)
if min_max_norm:
scaler = MinMaxScaler()
eval(data_file).iloc[:, 2:len(list(eval(data_file)))] = scaler.fit_transform(
eval(data_file).iloc[:, 2:len(list(eval(data_file)))])
else:
eval(data_file).iloc[:, 2:len(list(eval(data_file)))] = (eval(data_file).iloc[:, 2:len(
list(eval(data_file)))] - mean) / std
eval(data_file)['RUL'] = compute_rul_of_one_file(eval(data_file), RUL_FD00X=eval(rul_file))
current_len = len(eval(data_file))
eval(data_file).index = range(previous_len, previous_len + current_len)
previous_len = previous_len + current_len
frames.append(eval(data_file))
print(data_file)
if len(files) == 1:
global test_engine_id
test_engine_id = eval(data_file)['engine_id']
test = pd.concat(frames)
test = test.drop('engine_id', 1)
test = test.drop('cycle', 1)
# if files[0] == 1 or files[0] == 3:
# test = test.drop('setting3', 1)
# test = test.drop('s18', 1)
# test = test.drop('s19', 1)
test_values = test.values * SCALE
np.save('normalized_test_data.npy', test_values)
test.to_csv('normalized_test_data.csv')
###########
else:
test = pd.read_csv('normalized_test_data.csv', index_col=[0])
test_values = test.values
return train_values, test_values, train, test
def get_PHM08Data(save=False):
"""
Function is to load PHM 2008 challenge dataset
"""
if save == False:
return np.load("./PHM08/processed_data/phm_training_data.npy"), np.load("./PHM08/processed_data/phm_testing_data.npy"), np.load(
"./PHM08/processed_data/phm_original_testing_data.npy")
column_name = ['engine_id', 'cycle', 'setting1', 'setting2', 'setting3', 's1', 's2', 's3',
's4', 's5', 's6', 's7', 's8', 's9', 's10', 's11', 's12', 's13', 's14',
's15', 's16', 's17', 's18', 's19', 's20', 's21']
phm_training_data = pd.read_table("./PHM08/train.txt", header=None, delim_whitespace=True)
phm_training_data.columns = column_name
phm_testing_data = pd.read_table("./PHM08/final_test.txt", header=None, delim_whitespace=True)
phm_testing_data.columns = column_name
print("phm training")
mean = phm_training_data.iloc[:, 2:len(list(phm_training_data))].mean()
std = phm_training_data.iloc[:, 2:len(list(phm_training_data))].std()
phm_training_data.iloc[:, 2:len(list(phm_training_data))] = (phm_training_data.iloc[:, 2:len(
list(phm_training_data))] - mean) / std
phm_training_data['RUL'] = compute_rul_of_one_file(phm_training_data)
print("phm testing")
mean = phm_testing_data.iloc[:, 2:len(list(phm_testing_data))].mean()
std = phm_testing_data.iloc[:, 2:len(list(phm_testing_data))].std()
phm_testing_data.iloc[:, 2:len(list(phm_testing_data))] = (phm_testing_data.iloc[:, 2:len(
list(phm_testing_data))] - mean) / std
phm_testing_data['RUL'] = 0
#phm_testing_data['RUL'] = compute_rul_of_one_file(phm_testing_data)
train_engine_id = phm_training_data['engine_id']
# print(phm_training_engine_id[phm_training_engine_id==1].index)
phm_training_data = phm_training_data.drop('engine_id', 1)
phm_training_data = phm_training_data.drop('cycle', 1)
global test_engine_id
test_engine_id = phm_testing_data['engine_id']
phm_testing_data = phm_testing_data.drop('engine_id', 1)
phm_testing_data = phm_testing_data.drop('cycle', 1)
phm_training_data = phm_training_data.values
phm_testing_data = phm_testing_data.values
engine_ids = train_engine_id.unique()
train_test_split = np.random.rand(len(engine_ids)) < 0.80
train_engine_ids = engine_ids[train_test_split]
test_engine_ids = engine_ids[~train_test_split]
# test_engine_id = pd.Series(test_engine_ids)
training_data = phm_training_data[train_engine_id[train_engine_id == train_engine_ids[0]].index]
for id in train_engine_ids[1:]:
tmp = phm_training_data[train_engine_id[train_engine_id == id].index]
training_data = np.concatenate((training_data, tmp))
# print(training_data.shape)
testing_data = phm_training_data[train_engine_id[train_engine_id == test_engine_ids[0]].index]
for id in test_engine_ids[1:]:
tmp = phm_training_data[train_engine_id[train_engine_id == id].index]
testing_data = np.concatenate((testing_data, tmp))
# print(testing_data.shape)
print(phm_training_data.shape, phm_testing_data.shape, training_data.shape, testing_data.shape)
np.save("./PHM08/processed_data/phm_training_data.npy", training_data)
np.savetxt("./PHM08/processed_data/phm_training_data.txt", training_data, delimiter=" ")
np.save("./PHM08/processed_data/phm_testing_data.npy", testing_data)
np.savetxt("./PHM08/processed_data/phm_testing_data.txt", testing_data, delimiter=" ")
np.save("./PHM08/processed_data/phm_original_testing_data.npy", phm_testing_data)
np.savetxt("./PHM08/processed_data/phm_original_testing_data.csv", phm_testing_data, delimiter=",")
return training_data, testing_data, phm_testing_data
def data_augmentation(files=1, low=[10, 40, 90, 170], high=[35, 85, 160, 250], plot=False, combine=False):
'''
This helper function only augments the training data to look like testing data.
Training data always run to a failure. But testing data is mostly stop before a failure.
Therefore, training data augmented to have scenarios without failure
:param files: select wich sub CMPASS dataset
:param low: lower bound for the random selection of the engine cycle
:param high: upper bound for the random selection of the engine cycle
:param plot: switch to plot the augmented data
:return:
'''
DEBUG = False
column_name = ['engine_id', 'cycle', 'setting1', 'setting2', 'setting3', 's1', 's2', 's3',
's4', 's5', 's6', 's7', 's8', 's9', 's10', 's11', 's12', 's13', 's14',
's15', 's16', 's17', 's18', 's19', 's20', 's21']
### Loading original data ###
if files == "phm":
train_FD00x = pd.read_table("./PHM08/processed_data/phm_training_data.txt", header=None, delim_whitespace=True)
train_FD00x.drop(train_FD00x.columns[len(train_FD00x.columns) - 1], axis=1, inplace=True)
train_FD00x.columns = column_name
else:
if combine:
train_FD00x,_,_ = combine_FD001_and_FD003()
else:
file_path = "./CMAPSSData/train_FD00" + str(files) + ".txt"
train_FD00x = pd.read_table(file_path, header=None, delim_whitespace=True)
train_FD00x.columns = column_name
print(file_path.split("/")[-1])
### Standered Normal ###
mean = train_FD00x.iloc[:, 2:len(list(train_FD00x))].mean()
std = train_FD00x.iloc[:, 2:len(list(train_FD00x))].std()
std.replace(0, 1, inplace=True)
train_FD00x.iloc[:, 2:len(list(train_FD00x))] = (train_FD00x.iloc[:, 2:len(list(train_FD00x))] - mean) / std
final_train_FD = train_FD00x.copy()
previous_len = 0
frames = []
for i in range(len(high)):
train_FD = train_FD00x.copy()
train_engine_id = train_FD['engine_id']
engine_ids = train_engine_id.unique()
total_ids = len(engine_ids)
train_rul = []
print("*************", final_train_FD.shape, total_ids, low[i], high[i], "*****************")
for id in range(1, total_ids + 1):
train_engine_id = train_FD['engine_id']
indexes = train_engine_id[train_engine_id == id].index ### filter indexes related to id
traj_data = train_FD.loc[indexes] ### filter trajectory data
cutoff_cycle = random.randint(low[i], high[i]) ### randomly selecting the cutoff point of the engine cycle
if cutoff_cycle > max(traj_data['cycle']):
cutoff_cycle = max(traj_data['cycle'])
train_rul.append(max(traj_data['cycle']) - cutoff_cycle) ### collecting remaining cycles
cutoff_cycle_index = traj_data['cycle'][traj_data['cycle'] == cutoff_cycle].index ### cutoff cycle index
if DEBUG:
print("traj_shape: ", traj_data.shape, "current_engine_id:", id, "cutoff_cycle:", cutoff_cycle,
"cutoff_index", cutoff_cycle_index, "engine_fist_index", indexes[0], "engine_last_index",
indexes[-1])
### removing rows after cutoff cycle index ###
if cutoff_cycle_index[0] != indexes[-1]:
drop_range = list(range(cutoff_cycle_index[0] + 1, indexes[-1] + 1))
train_FD.drop(train_FD.index[drop_range], inplace=True)
train_FD.reset_index(drop=True, inplace=True)
### calculating the RUL for augmented data
train_rul = pd.DataFrame.from_dict({'RUL': train_rul})
train_FD['RUL'] = compute_rul_of_one_file(train_FD, RUL_FD00X=train_rul)
### changing the engine_id for augmented data
train_engine_id = train_FD['engine_id']
for id in range(1, total_ids + 1):
indexes = train_engine_id[train_engine_id == id].index
train_FD.loc[indexes, 'engine_id'] = id + total_ids * (i + 1)
if i == 0: # should only execute at the first iteration
final_train_FD['RUL'] = compute_rul_of_one_file(final_train_FD)
current_len = len(final_train_FD)
final_train_FD.index = range(previous_len, previous_len + current_len)
previous_len = previous_len + current_len
### Re-indexing the augmented data
train_FD['RUL'].index = range(previous_len, previous_len + len(train_FD))
previous_len = previous_len + len(train_FD)
final_train_FD = pd.concat(
[final_train_FD, train_FD]) # concatanete the newly augmented data with previous data
frames.append(final_train_FD)
train = pd.concat(frames)
train.reset_index(drop=True, inplace=True)
train_engine_id = train['engine_id']
# print(train_engine_id)
engine_ids = train_engine_id.unique()
# print(engine_ids[1:])
np.random.shuffle(engine_ids)
# print(engine_ids)
training_data = train.loc[train_engine_id[train_engine_id == engine_ids[0]].index]
training_data.reset_index(drop=True, inplace=True)
previous_len = len(training_data)
for id in engine_ids[1:]:
traj_data = train.loc[train_engine_id[train_engine_id == id].index]
current_len = len(traj_data)
traj_data.index = range(previous_len, previous_len + current_len)
previous_len = previous_len + current_len
training_data = pd.concat([training_data, traj_data])
global training_engine_id
training_engine_id = training_data['engine_id']
training_data = training_data.drop('engine_id', 1)
training_data = training_data.drop('cycle', 1)
# if files == 1 or files == 3:
# training_data = training_data.drop('setting3', 1)
# training_data = training_data.drop('s18', 1)
# training_data = training_data.drop('s19', 1)
training_data_values = training_data.values * SCALE
np.save('normalized_train_data.npy', training_data_values)
training_data.to_csv('normalized_train_data.csv')
train = training_data_values
x_train = train[:, :train.shape[1] - 1]
y_train = train[:, train.shape[1] - 1] * RESCALE
print("training in augmentation", x_train.shape, y_train.shape)
if plot:
plt.plot(y_train, label="train")
plt.figure()
plt.plot(x_train)
plt.title("train")
# plt.figure()
# plt.plot(y_train)
# plt.title("test")
plt.show()
def analyse_Data(dataset, files=None, plot=True, min_max=False):
'''
Generate pre-processed data according to the given dataset
:param dataset: choose between "phm" for PHM 2008 dataset or "cmapss" for CMAPSS data set with file number
:param files: Only for CMAPSS dataset to select sub dataset
:param min_max: switch to allow min-max normalization
:return:
'''
if dataset == "phm":
training_data, testing_data, phm_testing_data = get_PHM08Data(save=True)
x_phmtrain = training_data[:, :training_data.shape[1] - 1]
y_phmtrain = training_data[:, training_data.shape[1] - 1]
x_phmtest = testing_data[:, :testing_data.shape[1] - 1]
y_phmtest = testing_data[:, testing_data.shape[1] - 1]
print("phmtrain", x_phmtrain.shape, y_phmtrain.shape)
print("phmtest", x_phmtrain.shape, y_phmtrain.shape)
print("phmtest", phm_testing_data.shape)
if plot:
# plt.plot(x_phmtrain, label="phmtrain_x")
plt.figure()
plt.plot(y_phmtrain, label="phmtrain_y")
# plt.figure()
# plt.plot(x_phmtest, label="phmtest_x")
plt.figure()
plt.plot(y_phmtest, label="phmtest_y")
# plt.figure()
# plt.plot(phm_testing_data, label="test")
plt.show()
elif dataset == "cmapss":
training_data, testing_data, training_pd, testing_pd = get_CMAPSSData(save=True, files=files,
min_max_norm=min_max)
x_train = training_data[:, :training_data.shape[1] - 1]
y_train = training_data[:, training_data.shape[1] - 1]
print("training", x_train.shape, y_train.shape)
x_test = testing_data[:, :testing_data.shape[1] - 1]
y_test = testing_data[:, testing_data.shape[1] - 1]
print("testing", x_test.shape, y_test.shape)
if plot:
plt.plot(y_train, label="train")
plt.figure()
plt.plot(y_test, label="test")
plt.figure()
plt.plot(x_train)
plt.title("train: FD00" + str(files[0]))
plt.figure()
plt.plot(y_train)
plt.title("train: FD00" + str(files[0]))
plt.show()
def combine_FD001_and_FD003():
column_name = ['engine_id', 'cycle', 'setting1', 'setting2', 'setting3', 's1', 's2', 's3',
's4', 's5', 's6', 's7', 's8', 's9', 's10', 's11', 's12', 's13', 's14',
's15', 's16', 's17', 's18', 's19', 's20', 's21']
train_FD001 = pd.read_table("./CMAPSSData/train_FD001.txt", header=None, delim_whitespace=True)
train_FD003 = pd.read_table("./CMAPSSData/train_FD003.txt", header=None, delim_whitespace=True)
train_FD001.columns = column_name
train_FD003.columns = column_name
FD001_max_engine_id = max(train_FD001['engine_id'])
train_FD003['engine_id'] = train_FD003['engine_id'] + FD001_max_engine_id
train_FD003.index = range(len(train_FD001), len(train_FD001) + len(train_FD003))
train_FD001_FD002 = pd.concat([train_FD001,train_FD003])
test_FD001 = pd.read_table("./CMAPSSData/test_FD001.txt", header=None, delim_whitespace=True)
test_FD003 = pd.read_table("./CMAPSSData/test_FD003.txt", header=None, delim_whitespace=True)
test_FD001.columns = column_name
test_FD003.columns = column_name
FD001_max_engine_id = max(test_FD001['engine_id'])
test_FD003['engine_id'] = test_FD003['engine_id'] + FD001_max_engine_id
test_FD003.index = range(len(test_FD001), len(test_FD001) + len(test_FD003))
test_FD001_FD002 = pd.concat([test_FD001,test_FD003])
RUL_FD001 = pd.read_table("./CMAPSSData/RUL_FD001.txt", header=None, delim_whitespace=True)
RUL_FD003 = pd.read_table("./CMAPSSData/RUL_FD003.txt", header=None, delim_whitespace=True)
RUL_FD001.columns = ['RUL']
RUL_FD003.columns = ['RUL']
RUL_FD003.index = range(len(RUL_FD001), len(RUL_FD001) + len(RUL_FD003))
RUL_FD001_FD002 = pd.concat([test_FD001, test_FD003])
return train_FD001_FD002,test_FD001_FD002,RUL_FD001_FD002