-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathloop_closure.py
350 lines (277 loc) · 15.9 KB
/
loop_closure.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
import copy
import logging
from abc import ABC
from collections import namedtuple
from enum import Enum
import numpy as np
import open3d as o3d
from hydra.conf import dataclass, MISSING, ConfigStore, field
# Hydra and OmegaConf
from omegaconf import DictConfig, OmegaConf
# Project Imports
from slam.backend import Backend
from slam.common.modules import _with_cv2, _with_o3d
from slam.common.pointcloud import grid_sample
from slam.common.pose import transform_pointcloud
from slam.common.utils import assert_debug, check_tensor, ObjectLoaderEnum
# ----------------------------------------------------------------------------------------------------------------------
@dataclass
class LoopClosureConfig:
"""Configuration for a LoopClosure Algorithm"""
type: str = MISSING
class LoopClosure(ABC):
"""An abstract class for a LoopClosure Algorithm
The Loop Closure Algorithm searches the data_dict for KeyFrames
Which are typically aggregated PointCloud from Odometry Algorithms
And Return optionally some constraints on the trajectory
Loop Closure Algorithms typically need to store a lot of information
"""
def __init__(self, config: LoopClosureConfig, **kwargs):
self.config = config
def init(self):
"""Cleans and Initializes the Loop Closure Algorithm"""
self.clean()
def clean(self):
"""Delete all previous data of the LoopClosure"""
raise NotImplementedError("")
def process_next_frame(self, data_dict: dict):
raise NotImplementedError("")
def update_positions(self, trajectory: np.ndarray):
"""Updates trajectory
Args:
trajectory (np.ndarray): The absolute poses making the trajectory `(N, 4, 4)`
"""
pass
@staticmethod
def pointcloud_key() -> str:
"""Returns the key in the keyframe dict for a new pointcloud"""
return "lc_pointcloud"
@staticmethod
def relative_pose_key() -> str:
"""Returns the key in the keyframe dict for a new pose"""
return "lc_relative_pose"
# ----------------------------------------------------------------------------------------------------------------------
if _with_cv2:
import cv2
from slam.common.registration import ElevationImageRegistration
if _with_o3d:
import open3d as o3d
@dataclass
class EILoopClosureConfig:
"""Configuration for a ElevationImageLoopClosure Algorithm"""
type: str = "elevation_image"
local_map_size: int = 50 # The number of frames in the stored local map
overlap: int = 20 # The number of frames overlapping in the stored local map
debug: bool = False
max_num_candidates: int = 10 # Maximum number of candidates to inspect
max_distance: float = 100 # Limit the maximum distance to search for loops
min_id_distance: int = 200 # Do not try to detect loop closure between temporally close poses
stride: int = 1
icp_distance_threshold: float = 1.0
with_icp_refinement: bool = _with_o3d # Only activated if open3d can be loaded
ei_registration_config: DictConfig = field(default_factory=lambda: OmegaConf.create({
"features": "akaze",
"pixel_size": 0.1,
"z_min": -3.0,
"z_max": 5,
"sigma": 0.1,
"im_height": 1200,
"im_width": 1200,
"color_map": "jet",
"inlier_threshold": 50,
"distance_threshold": 2.0,
"flip_z_axis": False
}))
@dataclass
class MapData:
local_map_data: list = field(default_factory=lambda: [])
last_inserted_pose: np.ndarray = field(default_factory=lambda: np.eye(4, dtype=np.float64))
current_frame_id: int = 0
all_frames_absolute_poses: list = field(default_factory=lambda: [])
maps_absolute_poses: np.ndarray = field(default_factory=lambda: np.zeros((0, 4, 4), dtype=np.float64))
maps_frame_ids: list = field(default_factory=lambda: [])
current_map_pcs: list = field(default_factory=lambda: []) # Store the pointclouds
current_map_poses: list = field(default_factory=lambda: []) # Absolute poses
current_map_frameids: list = field(default_factory=lambda: [])
LocalMapData = namedtuple("LocalMapData", ['keypoints', 'descriptors', 'pointcloud', 'frame_id'])
if _with_o3d:
import open3d as o3d
def draw_registration_result(source, target, transformation):
source_temp = copy.deepcopy(source)
target_temp = copy.deepcopy(target)
source_temp.paint_uniform_color([1, 0.706, 0])
target_temp.paint_uniform_color([0, 0.651, 0.929])
source_temp.transform(transformation)
o3d.visualization.draw_geometries([source_temp, target_temp],
zoom=0.4459,
front=[0.9288, -0.2951, -0.2242],
lookat=[1.6784, 2.0612, 1.4451],
up=[-0.3402, -0.9189, -0.1996])
class ElevationImageLoopClosure(LoopClosure):
"""
An Implementation of a Loop Detection and Estimation Algorithm
"""
def __init__(self, config: EILoopClosureConfig, **kwargs):
super().__init__(config, **kwargs)
self.registration_2D = ElevationImageRegistration(config.ei_registration_config)
self.with_window = config.debug
self.winname = "Loop Closure Map"
if config.debug:
cv2.namedWindow(self.winname, cv2.WINDOW_KEEPRATIO | cv2.WINDOW_NORMAL)
self.data = MapData()
self.maps_saved_data: list = []
def serialize(self) -> MapData:
# Return MapData (convert cv2.KeyPoint which are not handled by the pickling protocol)
def convert_tuple(nt: namedtuple):
keypoints, descriptors, pointcloud, frame_id = nt
return ([(kpt.pt, kpt.size, kpt.angle, kpt.response, kpt.octave,
kpt.class_id) for kpt in keypoints], descriptors, pointcloud, frame_id)
self.data.local_map_data = [convert_tuple(nt) for nt in self.maps_saved_data]
return self.data
def update_positions(self, trajectory: np.ndarray):
check_tensor(trajectory, [self.data.current_frame_id, 4, 4])
if self.data.current_frame_id == 0:
return
num_saved_poses = len(self.data.all_frames_absolute_poses)
self.data.all_frames_absolute_poses = [trajectory[idx] for idx in range(num_saved_poses)]
self.data.maps_absolute_poses = np.array([trajectory[frame_id] for frame_id in self.data.maps_frame_ids])
self.data.last_inserted_pose = trajectory[-1]
num_poses_in_current_map = len(self.data.current_map_pcs)
for idx in range(num_poses_in_current_map):
self.data.current_map_poses[-idx] = trajectory[-idx]
def load(self, map_data: MapData):
# Return MapData (convert cv2.KeyPoint which are not handled by the pickling protocol)
def convert_tuple(_tuple):
keypoints, descriptors, pointcloud, frame_id = _tuple
return LocalMapData(
[cv2.KeyPoint(kpt[0][0], kpt[0][1], kpt[1], kpt[2], kpt[3], kpt[4], kpt[5]) for kpt in keypoints],
descriptors, pointcloud, frame_id)
self.data = map_data
self.maps_saved_data = [convert_tuple(_tuple) for _tuple in map_data.local_map_data]
def __del__(self):
if self.with_window:
cv2.destroyWindow(self.winname)
def clean(self):
self.data.current_map_pcs.clear()
self.data.current_map_poses.clear()
self.data.current_map_frameids.clear()
self.data.all_frames_absolute_poses.clear()
self.data.maps_frame_ids.clear()
self.data.last_inserted_pose = np.eye(4, dtype=np.float64)
self.data.current_frame_id = 0
self.data.maps_absolute_poses = np.zeros((0, 4, 4), dtype=np.float64)
self.maps_saved_data.clear()
def _compute_transform(self, initial_transform, candidate_pc, target_pc):
if not _with_o3d:
return initial_transform
assert isinstance(self.config, EILoopClosureConfig)
# Refine the transform by an ICP on the point cloud
source = o3d.geometry.PointCloud()
source.points = o3d.utility.Vector3dVector(candidate_pc)
target = o3d.geometry.PointCloud()
target.points = o3d.utility.Vector3dVector(target_pc)
result = o3d.pipelines.registration.registration_icp(
source, target, self.config.icp_distance_threshold, initial_transform.astype(np.float64),
o3d.pipelines.registration.TransformationEstimationPointToPoint())
return np.linalg.inv(result.transformation), candidate_pc, target_pc
def _match_candidates(self, candidate_ids, feat, desc, points, frame_id, data_dict: dict):
assert isinstance(self.config, EILoopClosureConfig)
for candidate in candidate_ids:
cd_feat, cd_desc, cd_pc_image, cd_frame_id = self.maps_saved_data[candidate]
transform, points_2D, inlier_matches = self.registration_2D.align_2d(feat, desc, cd_feat,
cd_desc, None, None)
if self.config.debug:
logging.info(f"Found {len(inlier_matches)}")
if transform is not None:
if self.config.with_icp_refinement and _with_o3d:
cd_points = cd_pc_image.reshape(-1, 3)
cd_points = cd_points[np.linalg.norm(cd_points, axis=1) > 0]
tgt_points = points.reshape(-1, 3)
tgt_points = tgt_points[np.linalg.norm(tgt_points, axis=1) > 0]
transform, source, target = self._compute_transform(transform, cd_points, tgt_points)
data_dict["transform"] = transform
data_dict["source"] = (cd_frame_id, source)
data_dict["target"] = (frame_id, target)
# Add the constraint to the data_dict
key = Backend.se3_loop_closure_constraint(cd_frame_id, frame_id)
logging.info(f"[LOOP CLOSURE] Found constraint between frame {cd_frame_id} and {frame_id}")
data_dict[key] = (transform, None)
def process_next_frame(self, data_dict: dict):
assert isinstance(self.config, EILoopClosureConfig)
if self.data.current_frame_id > 0:
assert_debug(self.relative_pose_key() in data_dict,
f"The Key `{self.relative_pose_key()}` must be defined at each time step for the loop closure to work."
f"Keys in the dictionary : {data_dict.keys()}")
relative_pose = data_dict[self.relative_pose_key()] # 4, 4
else:
relative_pose = np.eye(4, dtype=np.float64)
# Update the absolute pose of the last inserted pointcloud
self.data.last_inserted_pose = self.data.last_inserted_pose.dot(relative_pose)
if self.pointcloud_key() not in data_dict:
self.data.current_frame_id += 1
return data_dict
# Step 1: Add the aggregated pointcloud
pointcloud = data_dict[self.pointcloud_key()]
pointcloud = grid_sample(pointcloud, self.config.ei_registration_config.pixel_size * 2)[0] # N, 3
check_tensor(pointcloud, [-1, 3], np.ndarray)
check_tensor(relative_pose, [4, 4], np.ndarray)
if self.data.current_frame_id % self.config.stride == 0:
self.data.current_map_pcs.append(transform_pointcloud(pointcloud, self.data.last_inserted_pose))
self.data.current_map_poses.append(np.copy(self.data.last_inserted_pose))
self.data.current_map_frameids.append(self.data.current_frame_id)
# Step 2: Construct a local submap and run the loop closure
if len(self.data.current_map_pcs) >= self.config.local_map_size:
mid_pose_index = len(self.data.current_map_pcs) // 2
aggregated_pc = np.concatenate(self.data.current_map_pcs, axis=0)
mid_pose = self.data.current_map_poses[mid_pose_index]
mid_pose_frame_id = self.data.current_map_frameids[mid_pose_index]
mid_pose_I = np.linalg.inv(mid_pose)
aggregated_pc = transform_pointcloud(aggregated_pc, mid_pose_I)
# Project the pose in the image frame
image, feat, desc, meta_data = self.registration_2D.compute_features(aggregated_pc)
if self.with_window:
cv2.imshow(self.winname, image)
cv2.waitKey(10)
# Step 3: Search for a match along the closest persisted poses
local_map_id_distance = self.config.min_id_distance // (
self.config.local_map_size - self.config.overlap)
if self.data.maps_absolute_poses.shape[0] > local_map_id_distance:
candidate_indices = np.arange(self.data.maps_absolute_poses.shape[0])[:-local_map_id_distance]
candidate_poses = self.data.maps_absolute_poses[:, :3, 3][:-local_map_id_distance]
distances_to_mid_pose = np.linalg.norm(candidate_poses -
mid_pose[:3, 3].reshape(1, 3), axis=1)
_filter_distance = distances_to_mid_pose < self.config.max_distance
candidate_indices = candidate_indices[_filter_distance]
distances_to_mid_pose = distances_to_mid_pose[_filter_distance]
if distances_to_mid_pose.shape[0] > 0:
indices = np.argsort(distances_to_mid_pose)[:self.config.max_num_candidates]
self._match_candidates(candidate_indices[indices], feat, desc, meta_data["points_3D"],
mid_pose_frame_id, data_dict)
# Step 4: Save the matches and the new pose to disk
self.data.maps_absolute_poses = np.concatenate(
[self.data.maps_absolute_poses, mid_pose.reshape(1, 4, 4)],
axis=0)
self.data.maps_frame_ids.append(mid_pose_frame_id)
self.maps_saved_data.append(LocalMapData(feat, desc,
meta_data["points_3D"], mid_pose_frame_id))
self.data.all_frames_absolute_poses += self.data.current_map_poses[:-self.config.overlap]
# Remove old frames from the local map
self.data.current_map_pcs = self.data.current_map_pcs[-self.config.overlap:]
self.data.current_map_poses = self.data.current_map_poses[-self.config.overlap:]
self.data.current_map_frameids = self.data.current_map_frameids[-self.config.overlap:]
# Persist the information (Match) accross all images
self.data.current_frame_id += 1
return data_dict
# Add Elevation Image to the Config Store
cs = ConfigStore.instance()
cs.store(name="none", group="slam/loop_closure", node=None)
if _with_cv2:
cs.store(name="elevation_image", group="slam/loop_closure", node=EILoopClosureConfig)
# ----------------------------------------------------------------------------------------------------------------------
class LOOP_CLOSURE(ObjectLoaderEnum, Enum):
none = (None, None)
if _with_cv2:
elevation_image = (ElevationImageLoopClosure, EILoopClosureConfig)
@classmethod
def type_name(cls):
return "type"