-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
392 lines (299 loc) · 16.7 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
import argparse
import logging
import os
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
from networks.vision_transformer import SwinUnet
from networks.vit_seg_modeling import VisionTransformer as ViT_seg
from networks.vit_seg_modeling import CONFIGS as CONFIGS_ViT_seg
from networks.UNet import U_Net, R2U_Net, AttU_Net, NestedUNet
from networks.YourNet import Your_Net
import torch.utils.data as data
import json
import cv2
from PIL import Image
import SimpleITK as sitk
from torchvision import transforms
from torch.nn.modules.loss import CrossEntropyLoss
from torch.utils.data import DataLoader
from tqdm import tqdm
from utils import DiceLoss
import sys
import torch.nn as nn
import torch.optim as optim
from networks.swin_config import get_swin_config
import requests
import gdown
import matplotlib.pyplot as plt
import shutil
parser = argparse.ArgumentParser()
parser.add_argument('--max_iterations', type=int,
default=30000, help='maximum epoch number to train')
parser.add_argument('--max_epochs', type=int,
default=200, help='maximum epoch number to train')
parser.add_argument('--n_gpu', type=int, default=1, help='total gpu')
parser.add_argument('--deterministic', type=int, default=1,
help='whether use deterministic training')
parser.add_argument('--base_lr', type=float, default=0.01,
help='segmentation network learning rate')
parser.add_argument('--img_size', type=int,
default=224, help='input patch size of network input')
parser.add_argument('--batch_size', type=int,
default=4, help='Batch Size')
parser.add_argument('--seed', type=int,
default=1234, help='random seed')
parser.add_argument('--zip', action='store_true', help='use zipped dataset instead of folder dataset')
parser.add_argument('--cache-mode', type=str, default='part', choices=['no', 'full', 'part'],
help='no: no cache, '
'full: cache all data, '
'part: sharding the dataset into nonoverlapping pieces and only cache one piece')
parser.add_argument('--resume', help='resume from checkpoint')
parser.add_argument('--accumulation-steps', type=int, help="gradient accumulation steps")
parser.add_argument('--use-checkpoint', action='store_true',
help="whether to use gradient checkpointing to save memory")
parser.add_argument('--amp-opt-level', type=str, default='O1', choices=['O0', 'O1', 'O2'],
help='mixed precision opt level, if O0, no amp is used')
parser.add_argument('--tag', help='tag of experiment')
parser.add_argument('--eval', action='store_true', help='Perform evaluation only')
parser.add_argument('--throughput', action='store_true', help='Test throughput only')
args = parser.parse_args()
def calculate_dice(pred, gt):
# 用于计算 Dice 相似系数
intersection = np.logical_and(pred, gt).sum()
union = pred.sum() + gt.sum()
if union == 0:
return 1.0 # 如果两者都是空集,Dice 应为 1
return 2 * intersection / union
def calculate_metric_percase(pred, gt):
pred[pred > 0] = 1
gt[gt > 0] = 1
if pred.sum() > 0 and gt.sum() > 0:
dice = calculate_dice(pred, gt)
return dice
elif pred.sum() > 0 and gt.sum() == 0:
return 1
else:
return 0
def download_model(url,destination):
chunk_size = 8192 # Size of each chunk in bytes
response = requests.get(url, stream=True)
if response.status_code == 200:
with open(destination, "wb") as file:
for chunk in response.iter_content(chunk_size=chunk_size):
file.write(chunk)
print("Weights downloaded successfully.")
else:
print("Failed to download file. Status code:", response.status_code)
class DynamicDataset(data.Dataset):
def __init__(self, img_path, gt_path, data_end_json, data_split_json, fold_num, train_or_valid ,size = None):
with open(data_end_json) as f:
self.file_end = json.load(f)['file_ending']
with open(data_split_json) as f:
json_data = json.load(f)[int(fold_num)]
if train_or_valid == 'train':
self.img_name = json_data['train']
elif train_or_valid == 'val':
self.img_name = json_data['val']
self.size = size
self.img_path = img_path
self.gt_path = gt_path
def __getitem__(self, item):
imagename = self.img_name[item]
img_path = os.path.join(self.img_path, imagename+'_0000' + self.file_end)
gt_path = os.path.join(self.gt_path, imagename + self.file_end)
if self.file_end in ['.png', '.bmp', '.tif']:
npimg = cv2.imread(img_path, cv2.IMREAD_UNCHANGED)
npimg = np.array(npimg)
npgt = Image.open(gt_path)
npgt = np.array(npgt)
elif self.file_end in ['.gz', '.nrrd', '.mha', '.nii.gz', '.nii']:
npimg = sitk.ReadImage(img_path)
npimg = sitk.GetArrayFromImage(npimg)
npgt = sitk.ReadImage(gt_path)
npgt = sitk.GetArrayFromImage(npgt)
if npimg.ndim == 2:
npimg = np.expand_dims(npimg, axis=0)
elif npimg.ndim == 3:
npimg = npimg.transpose((2, 0, 1))
ori_shape = npimg.shape
npgt = np.expand_dims(npgt, axis=0)
npimg = torch.from_numpy(npimg)
npgt = torch.from_numpy(npgt)
if self.size is not None:
resize = transforms.Resize(size=(self.size,self.size), antialias=None)
npimg = resize(npimg)
npgt = resize(npgt)
else:
adapt_size = transforms.Resize(size=(int(npimg.shape[1]/64 + 1)*64, int(npimg.shape[2]/64+1)*64), antialias=None)
npimg = adapt_size(npimg)
npgt = adapt_size(npgt)
npgt = torch.squeeze(npgt)
return npimg, npgt, imagename + self.file_end, ori_shape
def __len__(self):
size = int(len(self.img_name))
return size
if __name__ == "__main__":
if os.environ.get('current_fold') is None:
os.environ['current_fold'] = '0'
os.environ['current_dataset'] = 'Dataset023_21'
os.environ['nnUNet_preprocessed'] = 'E:/nnSAM/nnUNET/nnUNet_preprocessed'
os.environ['nnUNet_raw'] = 'E:/nnSAM/nnUNET/nnUNet_raw'
os.environ['nnUNet_results'] = 'E:/nnSAM/nnUNET/nnUNet_results'
os.environ['MODEL_NAME'] = 'swinunet'
cudnn.benchmark = False
cudnn.deterministic = True
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
fold = os.environ['current_fold']
data_json_file = os.path.join(os.environ['nnUNet_preprocessed'], os.environ['current_dataset'], 'dataset.json')
split_json_path = os.path.join(os.environ['nnUNet_preprocessed'], os.environ['current_dataset'], 'splits_final.json')
base_json_path = os.path.join(os.environ['nnUNet_preprocessed'], os.environ['current_dataset'])
output_folder_test = os.path.join(os.environ['nnUNet_results'], os.environ['MODEL_NAME'], os.environ['current_dataset'], 'nnUNetTrainer__nnUNetPlans__2d', 'test_pred')
output_folder_5fold = os.path.join(os.environ['nnUNet_results'], os.environ['MODEL_NAME'], os.environ['current_dataset'], 'nnUNetTrainer__nnUNetPlans__2d', f'fold_{fold}')
imageTr_path = os.path.join(os.environ['nnUNet_raw'], os.environ['current_dataset'], 'imagesTr')
labelTr_path = os.path.join(os.environ['nnUNet_raw'], os.environ['current_dataset'], 'labelsTr')
imageTs_path = os.path.join(os.environ['nnUNet_raw'], os.environ['current_dataset'], 'imagesTs')
labelTs_path = os.path.join(os.environ['nnUNet_raw'], os.environ['current_dataset'], 'labelsTs')
with open(data_json_file) as f:
json_data = json.load(f)
num_classes = len(json_data['labels'])
in_channels = len(json_data['channel_names'])
model_name = os.environ['MODEL_NAME']
print(model_name)
if model_name == 'unet':
model = U_Net(in_ch=in_channels, out_ch=num_classes).cuda()
elif model_name == 'transunet':
download_url = 'https://huggingface.co/kenton-li/nnSAM/resolve/main/R50%2BViT-B_16.npz'
vit_name = 'R50-ViT-B_16'
config_vit = CONFIGS_ViT_seg[vit_name]
config_vit.n_classes = num_classes
args.img_size = 224
args.vit_patches_size = 16
config_vit.n_skip = 3
config_vit.pretrained_path = './networks/R50+ViT-B_16.npz'
if not os.path.exists(config_vit.pretrained_path):
download_model(download_url, config_vit.pretrained_path)
if vit_name.find('R50') != -1:
config_vit.patches.grid = (int(args.img_size / args.vit_patches_size), int(args.img_size / args.vit_patches_size))
model = ViT_seg(config_vit, img_size=224, num_classes=num_classes).cuda()
model.load_from(weights=np.load('networks/R50+ViT-B_16.npz'))
elif model_name == 'swinunet':
args.cfg = './networks/swin_tiny_patch4_window7_224_lite.yaml'
args.opts = None
swin_config = get_swin_config(args)
model = SwinUnet(swin_config, img_size=224, num_classes=num_classes).cuda()
#url = "https://drive.google.com/uc?id=1TyMf0_uvaxyacMmVzRfqvLLAWSOE2bJR"
url = 'https://huggingface.co/kenton-li/nnSAM/resolve/main/swin_tiny_patch4_window7_224.pth'
output = swin_config.MODEL.PRETRAIN_CKPT
if not os.path.exists(output):
download_model(url, output)
#gdown.download(url, output, quiet=False)
model.load_from(swin_config)
elif model_name == 'unetpp':
model = NestedUNet(in_ch=in_channels, out_ch=num_classes).cuda()
elif model_name == 'attunet':
model = AttU_Net(in_ch=in_channels, out_ch=num_classes).cuda()
elif model_name == 'r2unet':
model = R2U_Net(in_ch=in_channels, out_ch=num_classes).cuda()
elif model_name == 'yournet':
model = Your_Net(in_ch=in_channels, out_ch=num_classes).cuda()
else:
raise NotImplementedError(f"model_name {model_name} not supported")
logging.basicConfig(filename="logging.txt", level=logging.INFO,
format='[%(asctime)s.%(msecs)03d] %(message)s', datefmt='%H:%M:%S')
logging.getLogger().addHandler(logging.StreamHandler(sys.stdout))
logging.info(str(args))
base_lr = args.base_lr
batch_size = args.batch_size * args.n_gpu
if model_name == 'swinunet' or model_name == 'transunet':
db_train = DynamicDataset(img_path = imageTr_path , gt_path = labelTr_path, data_end_json = data_json_file , data_split_json=split_json_path, fold_num =fold, train_or_valid='train' , size = args.img_size )
db_val = DynamicDataset(img_path = imageTr_path , gt_path = labelTr_path, data_end_json = data_json_file , data_split_json=split_json_path, fold_num =fold, train_or_valid='val' , size = args.img_size )
else:
db_train = DynamicDataset(img_path = imageTr_path , gt_path = labelTr_path, data_end_json = data_json_file , data_split_json=split_json_path, train_or_valid='train', fold_num =fold)
db_val = DynamicDataset(img_path = imageTr_path , gt_path = labelTr_path, data_end_json = data_json_file , data_split_json=split_json_path, train_or_valid='val', fold_num =fold)
trainloader = DataLoader(db_train, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True)
validloader = DataLoader(db_val, batch_size=1, shuffle=False, num_workers=2, pin_memory=True)
if args.n_gpu > 1:
model = nn.DataParallel(model)
model.train()
ce_loss = CrossEntropyLoss()
dice_loss = DiceLoss(num_classes)
optimizer = optim.SGD(model.parameters(), lr=base_lr, momentum=0.9, weight_decay=0.0001)
iter_num = 0
max_epoch = args.max_epochs
max_iterations = args.max_epochs * len(trainloader) # max_epoch = max_iterations // len(trainloader) + 1
logging.info("{} iterations per epoch. {} max iterations ".format(len(trainloader), max_iterations))
best_performance = 0.0
with open(data_json_file) as f:
file_end = json.load(f)['file_ending']
os.makedirs(output_folder_test, exist_ok=True)
os.makedirs(output_folder_5fold, exist_ok=True)
os.makedirs(os.path.join(output_folder_5fold, 'validation_pred'), exist_ok=True)
iterator = tqdm(range(max_epoch), ncols=70)
val_dice_scores = []
epoch_numbers = []
for epoch_num in iterator:
for i_batch, (img, label, img_name, ori_shape) in enumerate(trainloader):
image_batch, label_batch = img, label
image_batch, label_batch = image_batch.cuda(), label_batch.cuda()
image_batch = image_batch.float()
outputs = model(image_batch)
loss_ce = ce_loss(outputs, label_batch[:].long())
loss_dice = dice_loss(outputs, label_batch, softmax=True)
loss = 0.5 * loss_ce + 0.5 * loss_dice
optimizer.zero_grad()
loss.backward()
optimizer.step()
lr_ = base_lr * (1.0 - iter_num / max_iterations) ** 0.9
for param_group in optimizer.param_groups:
param_group['lr'] = lr_
iter_num = iter_num + 1
#logging.info('iteration %d : loss : %f' % (iter_num, loss.item()))
save_interval = 5
if (epoch_num) % save_interval == 0:
metric_list = []
for i_batch, (img, label, img_name, ori_shape) in enumerate(validloader):
image_batch, label_batch = img, label
image_batch= image_batch.cuda()
image_batch = image_batch.float()
outputs = model(image_batch)
outputs = torch.nn.functional.interpolate(outputs, size=(ori_shape[-2], ori_shape[-1]), mode='nearest')
pred = outputs.data.max(1)[1].squeeze_(1).squeeze_(0).cpu().numpy().astype(np.uint8)
label_batch = torch.nn.functional.interpolate(label_batch.unsqueeze(0), size=(ori_shape[-2], ori_shape[-1]), mode='nearest').squeeze_(0).squeeze_(0).cpu().numpy().astype(np.uint8)
os.makedirs(os.path.join(output_folder_5fold, 'epoch_result'), exist_ok=True)
if file_end in ['.png', '.bmp', '.tif']:
pred_img = Image.fromarray(pred)
pred_img.save(os.path.join(output_folder_5fold, 'epoch_result', img_name[0]))
elif file_end in ['.gz', '.nrrd', '.mha', '.nii.gz', '.nii']:
pred_img = sitk.GetImageFromArray(pred)
sitk.WriteImage(pred_img, os.path.join(output_folder_5fold, 'epoch_result', img_name[0]))
each_metric = []
for i in range(1, num_classes):
each_metric.append(calculate_metric_percase(pred == i, label_batch == i))
dice = sum(each_metric) / len(each_metric)
metric_list.append(dice)
performance = sum(metric_list) / len(metric_list)
val_dice_scores.append(performance)
epoch_numbers.append(epoch_num)
logging.info('epoch %d : mean_dice : %f' % (epoch_num, performance))
# Plot validation metrics
plt.figure(figsize=(10, 10))
plt.title('Validation Dice Score over Epochs',fontsize=20)
plt.xlabel('Epochs',fontsize=20)
plt.ylabel('Dice Score',fontsize=20)
plt.plot(epoch_numbers, val_dice_scores)
plt.xticks(epoch_numbers)
plt.savefig(os.path.join(output_folder_5fold, 'progress.png'))
if performance > best_performance:
best_performance = performance
save_mode_path = os.path.join(output_folder_5fold, 'checkpoint_final.pth')
torch.save(model.state_dict(), save_mode_path)
logging.info("save model to {}".format(save_mode_path))
if os.path.exists(os.path.join(output_folder_5fold, 'validation_pred')):
shutil.rmtree(os.path.join(output_folder_5fold, 'validation_pred'))
os.rename(os.path.join(output_folder_5fold, 'epoch_result'), os.path.join(output_folder_5fold, 'validation_pred'))