-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
executable file
·187 lines (144 loc) · 6.39 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import argparse
import os
import time
from tqdm import tqdm
import torch
from torchvision import datasets, models, transforms
from torch.utils.data import DataLoader
class ButtBreadModel:
"""Corgi butt or loaf of bread? model"""
def __init__(self, device):
self.model = None
self.device = device
self.criterion = None
self.optimizer = None
def initialize(self):
"""Transfer Learning by using ResNet-152 as pre-trained weight"""
self.model = models.resnet152(pretrained=True).to(self.device)
for parameter in self.model.parameters():
parameter.requires_grad = False
self.model.fc = torch.nn.Sequential(
torch.nn.Linear(2048, 128),
torch.nn.ReLU(inplace=True),
torch.nn.Linear(128, 2),
).to(self.device)
self.criterion = torch.nn.CrossEntropyLoss()
self.optimizer = torch.optim.Adam(self.model.fc.parameters())
def train(self, image_dataloaders, image_datasets, epochs=1):
for epoch in range(epochs):
time_start = time.monotonic()
print(f"Epoch {epoch + 1}/{epochs}")
# Phase check
for phase in ["train", "valid"]:
if phase == "train":
self.model.train()
else:
self.model.eval()
running_loss = 0.0
running_corrects = 0
# Iterate and try to predict input and check with output -> generate loss and correct label
for inputs, labels in tqdm(image_dataloaders[phase]):
inputs = inputs.to(self.device)
labels = labels.to(self.device)
outputs = self.model(inputs)
loss = self.criterion(outputs, labels)
if phase == "train":
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
_, preds = torch.max(outputs, 1)
running_loss += loss.detach() * inputs.size(0)
running_corrects += torch.sum(preds == labels.data)
epoch_loss = running_loss / len(image_datasets[phase])
epoch_accuracy = running_corrects.float() / len(image_datasets[phase])
print(f"{phase} loss: {epoch_loss.item():.4f}, acc: {epoch_accuracy.item():.4f}")
print("Runtime: (", "{0:.2f}".format(time.monotonic() - time_start), " seconds)", sep="")
return self.model
def test(self, image_dataloaders):
"""Test with test set"""
test_accuracy_count = 0
for k, (test_images, test_labels) in tqdm(enumerate(image_dataloaders["test"])):
test_outputs = self.model(test_images.to(self.device))
_, prediction = torch.max(test_outputs.data, 1)
test_accuracy_count += torch.sum(prediction == test_labels.to(self.device).data).item()
test_accuracy = test_accuracy_count / len(image_dataloaders["test"])
return test_accuracy
def save(self, model_path):
"""Saving model weight"""
return torch.save(self.model.state_dict(), model_path)
def load(self, model_path):
"""Loading model weight"""
return self.model.load_state_dict(torch.load(model_path, map_location=self.device)).eval()
def get_dataset(dataset_path: str):
"""
Data transformation steps
Train set :: Resize -> Random affine -> Random horizontal flip -> To Tensor -> Normalize
Valid/test set :: Resize -> To Tensor -> Normalize
"""
data_transformers = {
"train": transforms.Compose(
[
transforms.Resize((224, 224)),
transforms.RandomAffine(0, shear=10, scale=(0.8, 1.2)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
]
),
"valid": transforms.Compose(
[
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
]
),
"test": transforms.Compose(
[
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225],
),
]
),
}
image_datasets = {
"train": datasets.ImageFolder(os.path.join(dataset_path, "train"), data_transformers["train"]),
"valid": datasets.ImageFolder(os.path.join(dataset_path, "valid"), data_transformers["valid"]),
"test": datasets.ImageFolder(os.path.join(dataset_path, "test"), data_transformers["test"]),
}
image_dataloaders = {
"train": DataLoader(image_datasets["train"], batch_size=32, shuffle=True, num_workers=2),
"valid": DataLoader(image_datasets["valid"], batch_size=32, shuffle=False, num_workers=2),
"test": DataLoader(image_datasets["test"], batch_size=1, shuffle=False, num_workers=2),
}
return image_datasets, image_dataloaders
def main(opt):
dataset_path, model_path, epochs = opt.dataset_path, opt.model_path, opt.epochs
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
image_datasets, image_dataloaders = get_dataset(dataset_path)
butt_bread_obj = ButtBreadModel(device=device)
butt_bread_obj.initialize()
butt_bread_obj.train(
image_dataloaders=image_dataloaders,
image_datasets=image_datasets,
epochs=epochs,
)
test_accuracy = butt_bread_obj.test(image_dataloaders=image_dataloaders)
print(f"Test accuracy: {test_accuracy}")
butt_bread_obj.save(model_path=model_path)
print(f"Saved model at {model_path}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--dataset-path", type=str, default="datasets/", help="Dataset path")
parser.add_argument("--model-path", type=str, default="buttbread_resnet152_3.h5", help="Output model name")
parser.add_argument("--epochs", type=int, default=3, help="Number of epochs")
args = parser.parse_args()
main(args)