-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
121 lines (95 loc) · 3.36 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import os
import glob
from Ising_1D import Solve_Ising_1d, quick_metropolis_dynamic, naive_metropolis_dynamic, reverse_quick_dynamic, Hamiltonian_Ising
'''
#python/numpy syntax and logic tests
test = np.array([1, 2, 3])
test2 = np.copy(test)
print(test)
test2[1] = -test2[1]
print(test, test2)
print(np.random.uniform(1))
print(all(test == 1))'''
#Ising_1D mc simulation compared to analytic results
'''
N = 10 ** 1
lattice = np.random.choice([1, -1], size=N)
print(np.arange(0, N, 1)[lattice == 1])
n_steps = 10 ** 5
J = 1 * np.ones(n_steps)
B = np.linspace(-2, 2, 10)
lattice = np.random.choice([1, -1], size=N)
KbT = 0.2
beta = 1 / KbT
ind = 0
M_naive = len(B) * [None]
M_ising = len(B) * [None]
for b in B:
#C_naive, M = naive_metropolis_dynamic(Hamiltonian_Ising, J, b * np.ones(n_steps), lattice, n_steps, beta)
C_naive, M = quick_metropolis_dynamic(Hamiltonian_Ising, J, b * np.ones(n_steps), lattice, n_steps, beta)
M_naive[ind] = M[int(len(M)/2):].mean()
M_ising[ind] = Solve_Ising_1d(J[0], b, beta)
ind += 1
plt.plot(B, M_ising)
plt.scatter(B, M_naive)
plt.show()'''
### exploring the data
#data_txt = pd.read_csv(r'C:\Users\Nutzer\Documents\SS2021\Projekt Statistische Physik\Ising_Model\Data_B\Data_combined.csv', sep=';',chunksize=64000)
'''
for chunk in data_txt:
data = chunk.to_numpy()
n_data = data.shape[0]
print(data.shape)
data_ordered = np.empty((data.shape))
#for i in range(data.shape[1]):
#data_ordered[:, i] = np.sort(data[:, i])
### THIS IS AN ISSUE!
unique = np.unique(data, axis=1)
print(unique.shape)
'''
'''def get_array(path, batches, data_size):
data = []
target = []
counter = 0
line_counter = 0
labels = np.ones(data_size)
labels[:int(data_size/2)] = 0
while True:
with open(path) as f:
for lines in f:
x = lines.split(";")
data.append(x)
target.append(labels[line_counter])
counter += 1
line_counter
if counter == batches:
X = np.array(data).reshape(batches, 500, 10, 1)
print(X)
y = np.array(target)
yield(X, y)
data = []
target = []
counter = 0
a = np.array([1, 1, 1, 0, 0, 1])
n_data = 3
order = np.random.random(n_data).argsort()
data = np.array(([1, 2, 3, 3.4], [4, 5, 6, 6.6], [7, 8, 9, 9.9]))
labels= np.array([1, 2, 3])
print(data[order, :])
print(data)
'''
def calc_dF(J, B, beta, n=10): ### eq 21 Jarzynski "Equalities and Inequalities:... " is it the correct approach?
def eps(beta, B, J, mode="plus"):
term_exp = np.exp(beta * J) * np.cosh(beta * B)
term_sqrt = np.sqrt(np.exp(2 * beta * J) * np.cosh(beta * B)**2 - 2 * np.sinh(2 * beta * J))
if mode == "plus":
return term_exp + term_sqrt;
else:
return term_exp - term_sqrt;
dF = - np.log((eps(beta, B, J, mode="minus")**n + eps(beta, B, J)**n) / (eps(beta, B, -J, mode="minus")**n +
eps(beta, B, -J)**n)) / beta
return dF;
print(calc_dF(20, -1, 0.1))