-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathLocalization.py
360 lines (293 loc) · 8.04 KB
/
Localization.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
## Modify the empty list, p, so that it becomes a UNIFORM probability
# distribution over five grid cells, as expressed in a list of
# five probabilities.
p = [0.2,0.2,0.2,0.2,0.2]
print p # TRUE
## Modify your code to create probability vectors, p, of arbitrary
# size, n. Use n=5 to verify that your new solution matches
# the previous one.
p=[]
n=5
print p # [0.2,0.2,0.2,0.2,0.2] should be
## Write code that outputs p after multiplying each entry
#by pHit or pMiss at the appropriate places. Remember that
#the red cells 1 and 2 are hits and the other green cells
#are misses.
p=[0.2,0.2,0.2,0.2,0.2]
pHit = 0.6
pMiss = 0.2
#Enter code here
p = []
print p
## Modify the program to find and print the sum of all the entries in the list p.
p=[0.2, 0.2, 0.2, 0.2, 0.2]
pHit = 0.6
pMiss = 0.2
p[0]=p[0]*pMiss
p[1]=p[1]*pHit
p[2]=p[2]*pHit
p[3]=p[3]*pMiss
p[4]=p[4]*pMiss
# Enter your code below
print(sum(p)) # TRUE
## Modify the code below so that the function sense, which
#takes p and Z as inputs, will output the NON-normalized
#probability distribution, q, after multiplying the entries
#in p by pHit or pMiss according to the color in the
#corresponding cell in world.
p=[0.2, 0.2, 0.2, 0.2, 0.2]
world=['green', 'red', 'red', 'green', 'green']
Z = 'red'
pHit = 0.6
pMiss = 0.2
def sense(p, Z):
q=[]
for i in range(len(p)):
hit = (Z == world[i])
q.append(p[i] * (hit * pHit + (1-hit) * pMiss))
return q
print sense(p,Z) # TRUE
## Modify your code so that it normalizes the output for
#the function sense. This means that the entries in q
#should sum to one.
p=[0.2, 0.2, 0.2, 0.2, 0.2]
world=['green', 'red', 'red', 'green', 'green']
Z = 'red'
pHit = 0.6
pMiss = 0.2
def sense(p, Z):
q=[]
for i in range(len(p)):
hit = (Z == world[i])
q.append(p[i] * (hit * pHit + (1-hit) * pMiss))
s = sum(q)
for i in range(len(p)):
q[i]=q[i]/s
return q
print sense(p,Z) # TRUE
## Try using your code with a measurement of 'green' and
#make sure the resulting probability distribution is correct.
p=[0.2, 0.2, 0.2, 0.2, 0.2]
world=['green', 'red', 'red', 'green', 'green']
Z = 'green'
pHit = 0.6
pMiss = 0.2
def sense(p, Z):
q=[]
for i in range(len(p)):
hit = (Z == world[i])
q.append(p[i] * (hit * pHit + (1-hit) * pMiss))
s = sum(q)
for i in range(len(p)):
q[i]=q[i]/s
return q
print sense(p, Z) # TRUE
#Modify the code so that it updates the probability twice
#and gives the posterior distribution after both
#measurements are incorporated. Make sure that your code
#allows for any sequence of measurement of any length.
p=[0.2, 0.2, 0.2, 0.2, 0.2]
world=['green', 'red', 'red', 'green', 'green']
measurements = ['red', 'green']
pHit = 0.6
pMiss = 0.2
def sense(p, Z):
q=[]
for i in range(len(p)):
hit = (Z == world[i])
q.append(p[i] * (hit * pHit + (1-hit) * pMiss))
s = sum(q)
for i in range(len(q)):
q[i] = q[i] / s
return q
#
#ADD YOUR CODE HERE
#
print p
## Program a function that returns a new distribution
#q, shifted to the right by U units. If U=0, q should
#be the same as p.
p=[0, 1, 0, 0, 0]
world=['green', 'red', 'red', 'green', 'green']
measurements = ['red', 'green']
pHit = 0.6
pMiss = 0.2
def sense(p, Z):
q=[]
for i in range(len(p)):
hit = (Z == world[i])
q.append(p[i] * (hit * pHit + (1-hit) * pMiss))
s = sum(q)
for i in range(len(q)):
q[i] = q[i] / s
return q
def move(p, U):
#
U = U % len(p)
q = p[-U:] + p[:-U]
#
return q
print move(p, 1) # TRUE
## Modify the move function to accommodate the added
# probabilities of overshooting or undershooting
# the intended destination.
p = [0, 1, 0, 0, 0]
world = ['green', 'red', 'red', 'green', 'green']
measurements = ['red', 'green']
pHit = 0.6
pMiss = 0.2
pExact = 0.8
pOvershoot = 0.1
pUndershoot = 0.1
def sense(p, Z):
q = []
for i in range(len(p)):
hit = (Z == world[i])
q.append(p[i] * (hit * pHit + (1 - hit) * pMiss))
s = sum(q)
for i in range(len(q)):
q[i] = q[i] / s
return q
def move(p, U):
q = []
for i in range(len(p)):
s = pExact * p[(i-U) % len(p)]
s = s + pOvershoot * p[(i-U-1) % len(p)]
s = s + pUndershoot * p[(i-U+1) % len(p)]
q.append(s)
return q
print move(p, 1) # TRUE
## Write code that makes the robot move twice and then prints
# out the resulting distribution, starting with the initial
# distribution p = [0, 1, 0, 0, 0]
p=[0, 1, 0, 0, 0]
world=['green', 'red', 'red', 'green', 'green']
measurements = ['red', 'green']
pHit = 0.6
pMiss = 0.2
pExact = 0.8
pOvershoot = 0.1
pUndershoot = 0.1
def sense(p, Z):
q=[]
for i in range(len(p)):
hit = (Z == world[i])
q.append(p[i] * (hit * pHit + (1-hit) * pMiss))
s = sum(q)
for i in range(len(q)):
q[i] = q[i] / s
return q
def move(p, U):
q = []
for i in range(len(p)):
s = pExact * p[(i-U) % len(p)]
s = s + pOvershoot * p[(i-U-1) % len(p)]
s = s + pUndershoot * p[(i-U+1) % len(p)]
q.append(s)
return q
#
p = move(p,1)
p = move(p,1)
print p # TRUE
## Write code that moves 1000 times and then prints the
#resulting probability distribution.
p=[0, 1, 0, 0, 0]
world=['green', 'red', 'red', 'green', 'green']
measurements = ['red', 'green']
pHit = 0.6
pMiss = 0.2
pExact = 0.8
pOvershoot = 0.1
pUndershoot = 0.1
def sense(p, Z):
q=[]
for i in range(len(p)):
hit = (Z == world[i])
q.append(p[i] * (hit * pHit + (1-hit) * pMiss))
s = sum(q)
for i in range(len(q)):
q[i] = q[i] / s
return q
def move(p, U):
q = []
for i in range(len(p)):
s = pExact * p[(i-U) % len(p)]
s = s + pOvershoot * p[(i-U-1) % len(p)]
s = s + pUndershoot * p[(i-U+1) % len(p)]
q.append(s)
return q
#
for i in range(100):
p = move(p,1)
#
print p # TRUE
## Given the list motions=[1,1] which means the robot
#moves right and then right again, compute the posterior
#distribution if the robot first senses red, then moves
#right one, then senses green, then moves right again,
#starting with a uniform prior distribution.
p=[0.2, 0.2, 0.2, 0.2, 0.2]
world=['green', 'red', 'red', 'green', 'green']
measurements = ['red', 'green']
motions = [1,1]
pHit = 0.6
pMiss = 0.2
pExact = 0.8
pOvershoot = 0.1
pUndershoot = 0.1
def sense(p, Z):
q=[]
for i in range(len(p)):
hit = (Z == world[i])
q.append(p[i] * (hit * pHit + (1-hit) * pMiss))
s = sum(q)
for i in range(len(q)):
q[i] = q[i] / s
return q
def move(p, U):
q = []
for i in range(len(p)):
s = pExact * p[(i-U) % len(p)]
s = s + pOvershoot * p[(i-U-1) % len(p)]
s = s + pUndershoot * p[(i-U+1) % len(p)]
q.append(s)
return q
#
# ADD CODE HERE
p = sense(p,"red")
p = move(p,1)
p = sense(p,"green")
p = move(p,1)
#
print p # TRUE
# Modify the previous code so that the robot senses red twice.
p = [0.2, 0.2, 0.2, 0.2, 0.2]
world = ['green', 'red', 'red', 'green', 'green']
measurements = ['red', 'green']
motions = [1, 1]
pHit = 0.6
pMiss = 0.2
pExact = 0.8
pOvershoot = 0.1
pUndershoot = 0.1
def sense(p, Z):
q = []
for i in range(len(p)):
hit = (Z == world[i])
q.append(p[i] * (hit * pHit + (1 - hit) * pMiss))
s = sum(q)
for i in range(len(q)):
q[i] = q[i] / s
return q
def move(p, U):
q = []
for i in range(len(p)):
s = pExact * p[(i - U) % len(p)]
s = s + pOvershoot * p[(i - U - 1) % len(p)]
s = s + pUndershoot * p[(i - U + 1) % len(p)]
q.append(s)
return q
for k in range(len(measurements)):
p = sense(p, measurements[0])
p = move(p, motions[k])
print p # TRUE