-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdataset_AE.py
130 lines (109 loc) · 3.55 KB
/
dataset_AE.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import cv2
import numpy as np
import os
import pandas as pd
from torch.utils.data import Dataset
class TrainDataset(Dataset):
def __init__(self, path, width=512):
self.path = path
self.data = pd.read_csv(os.path.join(self.path, 'train.csv'))
self.width = width
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data.iloc[idx]
PID = item['PID']
CF_path = item['CF_path']
OCT_path = item['OCT_path']
source = cv2.imread(os.path.join(self.path, 'CF', CF_path))
h, w, _ = source.shape
source = source[:, w//2-h//2:w//2+h//2, :]
source = cv2.cvtColor(source, cv2.COLOR_BGR2RGB)
source = cv2.resize(source, (self.width, self.width))
# Normalize source images to [0, 1].
source = source.astype(np.float32) / 255.0
target = np.zeros((self.width, self.width, 6))
for i in range(6):
target_i = cv2.imread(os.path.join(self.path, 'OCT', OCT_path, f"{OCT_path}_{i}.jpg"), cv2.IMREAD_GRAYSCALE)
if idx <= 728:
target_i = target_i[:496,-768:]
target_i = cv2.resize(target_i, (self.width, self.width))
target[:, :, i] = target_i
# Normalize target images to [-1, 1].
target = (target.astype(np.float32) / 127.5) - 1.0
return dict(
jpg=target,
txt="",
hint=source,
id=idx,
PID=PID,
CF_path=CF_path,
OCT_path=OCT_path
)
class ValidDataset(Dataset):
def __init__(self, path, width=512):
self.path = path
self.data = pd.read_csv(os.path.join(self.path, 'val.csv'))
self.width = width
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
item = self.data.iloc[idx]
PID = item['PID']
CF_path = item['CF_path']
source = cv2.imread(os.path.join(self.path, 'CF', CF_path))
h, w, _ = source.shape
source = source[:, w//2-h//2:w//2+h//2, :]
source = cv2.cvtColor(source, cv2.COLOR_BGR2RGB)
source = cv2.resize(source, (self.width, self.width))
# Normalize source images to [0, 1].
source = source.astype(np.float32) / 255.0
# Normalize target images to [-1, 1].
target = np.zeros((self.width, self.width, 6))
return dict(
jpg=target,
txt="",
hint=source,
id=idx,
PID=PID,
CF_path=CF_path,
)
if __name__ == '__main__':
data_path = "/home/pod/shared-nvme/data/EyeOCT/train"
train_dataset = TrainDataset(data_path)
print(len(train_dataset)) # 750
# for i in range(750):
# item = train_dataset[i]
# OCT_path = item['OCT_path']
# print(i, OCT_path)
item = train_dataset[0]
jpg = item['jpg']
txt = item['txt']
hint = item['hint']
id_ = item['id']
PID = item['PID']
CF_path = item['CF_path']
OCT_path = item['OCT_path']
print(txt)
print(jpg.shape)
print(hint.shape)
print(id_)
print(PID)
print(CF_path)
print(OCT_path)
data_path = "/home/pod/shared-nvme/data/EyeOCT/val"
valid_dataset = ValidDataset(data_path)
print(len(valid_dataset))
item = valid_dataset[0]
jpg = item['jpg']
txt = item['txt']
hint = item['hint']
id_ = item['id']
PID = item['PID']
CF_path = item['CF_path']
print(txt)
print(jpg.shape)
print(hint.shape)
print(id_)
print(PID)
print(CF_path)