Skip to content

Generalized zeta function imprecise for large negative s #410

@Expander

Description

@Expander

The current implementation of the generalized zeta function $\zeta(s,z)$ suffers from an imprecision for large negative $s$:

julia> SpecialFunctions.zeta(-100, 2.0)
-1.921642939869165e44

The correct result should be $-1$, because for negative integer $s$ one would have
$$\zeta(-n,a)=-\frac{B_{n+1}(a)}{n+1}$$
[Wikipedia]
For example Mathematica gives the correct result:

In[]:= Zeta[-100, 2] // N[#,17]&                                            
Out[]= -1.0000000000000000
In[]:= -BernoulliB[100 + 1, 2]/(100 + 1)
Out[]= -1

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions