@@ -51,8 +51,8 @@ rand{β}(d::Type{Wigner{β}}, dims...) = rand(d(), dims...)
51
51
52
52
function rand (d:: Wigner{1} , n:: Int )
53
53
A = randn (n, n)
54
- normalization = √ ( 2 * n )
55
- return Symmetric ((A + A' ) / normalization)
54
+ normalization = 1 / √ ( 2 n )
55
+ return Symmetric ((A + A' ) / 2 * normalization)
56
56
end
57
57
58
58
function rand (d:: Wigner{2} , n:: Int )
@@ -90,16 +90,19 @@ Unlike for `rand(Wigner{β}, n)`, which is restricted to β=1,2 or 4,
90
90
The β=∞ case is defined in Edelman, Persson and Sutton, 2012
91
91
"""
92
92
function tridrand {β} (d:: Wigner{β} , n:: Int )
93
+ χ (df:: Real ) = rand (Distributions. Chi (df))
93
94
if β≤ 0
94
- throw (ValueError (" β = $β cannot be nonpositive" ))
95
+ throw (ValueError (" β = $β cannot be nonpositive" ))
95
96
elseif isinf (β)
96
- return tridrand (Wigner{Inf }, n)
97
+ return tridrand (Wigner{Inf }, n)
97
98
else
98
- Hd = randn (n)/√ (n)
99
- He = [χ (β* i)/√ (2 * n) for i= n- 1 : - 1 : 1 ]
100
- return SymTridiagonal (Hd, He)
99
+ normalization = 1 / √ (2 n)
100
+ Hd = rand (Distributions. Normal (0 ,2 ), n)./√ 2
101
+ He = [χ (β* i)/√ 2 for i= n- 1 : - 1 : 1 ]
102
+ return normalization * SymTridiagonal (Hd, He)
101
103
end
102
104
end
105
+
103
106
function tridrand {β} (d:: Wigner{β} , dims... )
104
107
if length (dims)== 2 && dims[1 ] == dims[2 ]
105
108
return rand (d, dims[1 ])
0 commit comments