Skip to content

4x regression for loading JLLs in 1.11, or likely the first one, such as micromamba_jll #55717

@PallHaraldsson

Description

@PallHaraldsson

@cdoris, Probably needs only this one additionally: precompile(Tuple{typeof(Base.first), Array{Any, 1}}) impacting e.g. CondaPkg, and therefore PythonCall.

or all of them, at least somewhere? Might then improve on 1.10 timing? JLLWrappers takes most, 53%, of this time (well because of Dates), and itself has 2.7x regression.

$ time julia +1.11 --trace-compile=stderr -e "using micromamba_jll"
precompile(Tuple{typeof(Base.setindex!), Base.EnvDict, Bool, String})
precompile(Tuple{typeof(micromamba_jll.find_artifact_dir)})
precompile(Tuple{typeof(Base.invokelatest), Any})
precompile(Tuple{typeof(JLLWrappers.get_julia_libpaths)})
precompile(Tuple{typeof(Base.first), Array{Any, 1}})

real	0m0,957s
user	0m1,717s
sys	0m0,133s

$ time julia +1.10 --trace-compile=stderr -e "using micromamba_jll"
precompile(Tuple{typeof(Base.setindex!), Base.EnvDict, Bool, String})
precompile(Tuple{typeof(micromamba_jll.find_artifact_dir)})
precompile(Tuple{typeof(Base.invokelatest), Any})
precompile(Tuple{typeof(JLLWrappers.get_julia_libpaths)})

real	0m0,295s
user	0m0,417s
sys	0m0,232s
$ time julia +1.11 -e "using JLLWrappers"

real	0m0,293s
user	0m0,921s
sys	0m0,087s

$ time julia +1.10 -e "using JLLWrappers"

real	0m0,268s
user	0m0,342s
sys	0m0,180s

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions