You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
* Remove literal_getfield usage
* Improve perf
* Progress
* Lots of changes
* Add Test as test dep
* Fix typo
* Add Pkg to examples
* Add Pkg to test deps
* Require Mooncake 0-4-3
* Import more names
* Remove Mooncake as direct dep
* Formatting
* Formatting
* Tidy up + enable all tests
* Enable all tests
* Add JET as test dep'
* Tidy up and use JET rather than inferred
* Some fixes
* Discuss the changes in this release
* Figure out how to avoid bad gradients
Copy file name to clipboardexpand all lines: README.md
+5-5
Original file line number
Diff line number
Diff line change
@@ -41,7 +41,7 @@ f = to_sde(f_naive, SArrayStorage(Float64))
41
41
42
42
# Project onto finite-dimensional distribution as usual.
43
43
# x = range(-5.0; step=0.1, length=10_000)
44
-
x =RegularSpacing(0.0, 0.1, 10_000) # Hack for Zygote.
44
+
x =RegularSpacing(0.0, 0.1, 10_000) # Hack for AD.
45
45
fx =f(x, 0.1)
46
46
47
47
# Sample from the prior as usual.
@@ -63,7 +63,7 @@ rand(f_post(x))
63
63
logpdf(f_post(x), y)
64
64
```
65
65
66
-
## Learning kernel parameters with [Optim.jl](https://github.com/JuliaNLSolvers/Optim.jl), [ParameterHandling.jl](https://github.com/invenia/ParameterHandling.jl), and [Zygote.jl](https://github.com/FluxML/Zygote.jl/)
66
+
## Learning kernel parameters with [Optim.jl](https://github.com/JuliaNLSolvers/Optim.jl), [ParameterHandling.jl](https://github.com/invenia/ParameterHandling.jl), and [Mooncake.jl](https://github.com/compintell/Mooncake.jl/)
67
67
68
68
TemporalGPs.jl doesn't provide scikit-learn-like functionality to train your model (find good kernel parameter settings).
69
69
Instead, we offer the functionality needed to easily implement your own training functionality using standard tools from the Julia ecosystem, as shown below.
@@ -76,7 +76,7 @@ using TemporalGPs
76
76
# Load standard packages from the Julia ecosystem
77
77
using Optim # Standard optimisation algorithms.
78
78
using ParameterHandling # Helper functionality for dealing with model parameters.
79
-
usingZygote# Algorithmic Differentiation
79
+
usingMooncake# Algorithmic Differentiation
80
80
81
81
using ParameterHandling: flatten
82
82
@@ -115,7 +115,7 @@ objective(params)
115
115
# Optim.jl for more info on available optimisers and their properties.
@@ -152,7 +152,7 @@ This tells TemporalGPs that you want all parameters of `f` and anything derived
152
152
153
153
"naive" timings are with the usual [AbstractGPs.jl](https://https://github.com/JuliaGaussianProcesses/AbstractGPs.jl/) inference routines, and is the default implementation for GPs. "lgssm" timings are conducted using `to_sde` with no additional arguments. "static-lgssm" uses the `SArrayStorage(Float64)` option discussed above.
154
154
155
-
Gradient computations use Zygote. Custom adjoints have been implemented to achieve this level of performance.
155
+
Gradient computations use Mooncake. Custom adjoints have been implemented to achieve this level of performance.
0 commit comments