-
Notifications
You must be signed in to change notification settings - Fork 372
/
Copy pathgrouping.jl
395 lines (314 loc) · 11.2 KB
/
grouping.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
#
# Split - Apply - Combine operations
#
##############################################################################
##
## GroupedDataFrame...
##
##############################################################################
"""
The result of a `groupby` operation on an AbstractDataFrame; a
view into the AbstractDataFrame grouped by rows.
Not meant to be constructed directly, see `groupby`.
"""
type GroupedDataFrame
parent::AbstractDataFrame
cols::Vector # columns used for sorting
idx::Vector{Int} # indexing vector when sorted by the given columns
starts::Vector{Int} # starts of groups
ends::Vector{Int} # ends of groups
end
#
# Split
#
"""
A view of an AbstractDataFrame split into row groups
```julia
groupby(d::AbstractDataFrame, cols)
groupby(cols)
```
### Arguments
* `d` : an AbstractDataFrame
* `cols` : an
If `d` is not provided, a curried version of groupby is given.
### Returns
* `::GroupedDataFrame` : a grouped view into `d`
### Details
An iterator over a `GroupedDataFrame` returns a `SubDataFrame` view
for each grouping into `d`. A `GroupedDataFrame` also supports
indexing by groups and `map`.
See the following for additional split-apply-combine operations:
* `by` : split-apply-combine using functions
* `aggregate` : split-apply-combine; applies functions in the form of a cross product
* `combine` : combine (obviously)
* `colwise` : apply a function to each column in an AbstractDataFrame or GroupedDataFrame
Piping methods `|>` are also provided.
See the
[DataFramesMeta](https://github.com/JuliaStats/DataFramesMeta.jl)
package for more operations on GroupedDataFrames.
### Examples
```julia
df = DataFrame(a = repeat([1, 2, 3, 4], outer=[2]),
b = repeat([2, 1], outer=[4]),
c = randn(8))
gd = groupby(df, :a)
gd[1]
last(gd)
vcat([g[:b] for g in gd]...)
for g in gd
println(g)
end
map(d -> mean(d[:c]), gd) # returns a GroupApplied object
combine(map(d -> mean(d[:c]), gd))
df |> groupby(:a) |> [sum, length]
df |> groupby([:a, :b]) |> [sum, length]
```
"""
function groupby{T}(d::AbstractDataFrame, cols::Vector{T})
## a subset of Wes McKinney's algorithm here:
## http://wesmckinney.com/blog/?p=489
ncols = length(cols)
# use the pool trick to get a set of integer references for each unique item
dv = PooledDataArray(d[cols[ncols]])
# if there are NAs, add 1 to the refs to avoid underflows in x later
dv_has_nas = (findfirst(dv.refs, 0) > 0 ? 1 : 0)
# use UInt32 instead of the PDA's integer size since the number of levels can be high
x = copy!(similar(dv.refs, UInt32), dv.refs) .+ dv_has_nas
# also compute the number of groups, which is the product of the set lengths
ngroups = length(dv.pool) + dv_has_nas
# if there's more than 1 column, do roughly the same thing repeatedly
for j = (ncols - 1):-1:1
dv = PooledDataArray(d[cols[j]])
dv_has_nas = (findfirst(dv.refs, 0) > 0 ? 1 : 0)
for i = 1:nrow(d)
x[i] += (dv.refs[i] + dv_has_nas- 1) * ngroups
end
ngroups = ngroups * (length(dv.pool) + dv_has_nas)
# TODO if ngroups is really big, shrink it
end
(idx, starts) = DataArrays.groupsort_indexer(x, ngroups)
# Remove zero-length groupings
starts = _uniqueofsorted(starts)
ends = starts[2:end] - 1
GroupedDataFrame(d, cols, idx, starts[1:end-1], ends)
end
groupby(d::AbstractDataFrame, cols) = groupby(d, [cols])
# add a function curry
groupby{T}(cols::Vector{T}) = x -> groupby(x, cols)
groupby(cols) = x -> groupby(x, cols)
Base.start(gd::GroupedDataFrame) = 1
Base.next(gd::GroupedDataFrame, state::Int) =
(view(gd.parent, gd.idx[gd.starts[state]:gd.ends[state]]),
state + 1)
Base.done(gd::GroupedDataFrame, state::Int) = state > length(gd.starts)
Base.length(gd::GroupedDataFrame) = length(gd.starts)
Base.endof(gd::GroupedDataFrame) = length(gd.starts)
Base.first(gd::GroupedDataFrame) = gd[1]
Base.last(gd::GroupedDataFrame) = gd[end]
Base.getindex(gd::GroupedDataFrame, idx::Int) =
view(gd.parent, gd.idx[gd.starts[idx]:gd.ends[idx]])
Base.getindex(gd::GroupedDataFrame, I::AbstractArray{Bool}) =
GroupedDataFrame(gd.parent, gd.cols, gd.idx, gd.starts[I], gd.ends[I])
Base.names(gd::GroupedDataFrame) = names(gd.parent)
_names(gd::GroupedDataFrame) = _names(gd.parent)
##############################################################################
##
## GroupApplied...
## the result of a split-apply operation
## TODOs:
## - better name?
## - ref
## - keys, vals
## - length
## - start, next, done -- should this return (k,v) or just v?
## - make it a real associative type? Is there a need to look up key columns?
##
##############################################################################
"""
The result of a `map` operation on a GroupedDataFrame; mainly for use
with `combine`
Not meant to be constructed directly, see `groupby` abnd
`combine`. Minimal support is provided for this type. `map` is
provided for a GroupApplied object.
"""
type GroupApplied
gd::GroupedDataFrame
vals::Vector
function GroupApplied(gd, vals)
if length(gd) != length(vals)
error("GroupApplied requires keys and vals be of equal length.")
end
new(gd, vals)
end
end
#
# Apply / map
#
# map() sweeps along groups
function Base.map(f::Function, gd::GroupedDataFrame)
GroupApplied(gd, AbstractDataFrame[wrap(f(d)) for d in gd])
end
function Base.map(f::Function, ga::GroupApplied)
GroupApplied(ga.gd, AbstractDataFrame[wrap(f(d)) for d in ga.vals])
end
wrap(df::AbstractDataFrame) = df
wrap(A::Matrix) = convert(DataFrame, A)
wrap(s::Any) = DataFrame(x1 = s)
"""
Combine a GroupApplied object (rudimentary)
```julia
combine(ga::GroupApplied)
```
### Arguments
* `ga` : a GroupApplied
### Returns
* `::DataFrame`
### Examples
```julia
df = DataFrame(a = repeat([1, 2, 3, 4], outer=[2]),
b = repeat([2, 1], outer=[4]),
c = randn(8))
combine(map(d -> mean(d[:c]), gd))
```
"""
function combine(ga::GroupApplied)
gd, vals = ga.gd, ga.vals
# Could be made shorter with a rep(x, lengths) function
# See JuliaLang/julia#16443
idx = Vector{Int}(sum(Int[size(val, 1) for val in vals]))
j = 0
for i in 1:length(vals)
n = size(vals[i], 1)
@inbounds idx[j + (1:n)] = gd.idx[gd.starts[i]]
j += n
end
ret = gd.parent[idx, gd.cols]
hcat!(ret, vcat(vals))
end
"""
Apply a function to each column in an AbstractDataFrame or
GroupedDataFrame
```julia
colwise(f::Function, d)
colwise(d)
```
### Arguments
* `f` : a function or vector of functions
* `d` : an AbstractDataFrame of GroupedDataFrame
If `d` is not provided, a curried version of groupby is given.
### Returns
* various, depending on the call
### Examples
```julia
df = DataFrame(a = repeat([1, 2, 3, 4], outer=[2]),
b = repeat([2, 1], outer=[4]),
c = randn(8))
colwise(sum, df)
colwise(sum, groupby(df, :a))
```
"""
colwise(f::Function, d::AbstractDataFrame) = Any[[f(d[idx])] for idx in 1:size(d, 2)]
colwise(f::Function, gd::GroupedDataFrame) = map(colwise(f), gd)
colwise(f::Function) = x -> colwise(f, x)
colwise(f) = x -> colwise(f, x)
# apply several functions to each column in a DataFrame
colwise{T<:Function}(fns::Vector{T}, d::AbstractDataFrame) = Any[[f(d[idx])] for f in fns, idx in 1:size(d, 2)][:]
colwise{T<:Function}(fns::Vector{T}, gd::GroupedDataFrame) = map(colwise(fns), gd)
colwise{T<:Function}(fns::Vector{T}) = x -> colwise(fns, x)
"""
Split-apply-combine in one step; apply `f` to each grouping in `d`
based on columns `col`
```julia
by(d::AbstractDataFrame, cols, f::Function)
by(f::Function, d::AbstractDataFrame, cols)
```
### Arguments
* `d` : an AbstractDataFrame
* `cols` : a column indicator (Symbol, Int, Vector{Symbol}, etc.)
* `f` : a function to be applied to groups; expects each argument to
be an AbstractDataFrame
`f` can return a value, a vector, or a DataFrame. For a value or
vector, these are merged into a column along with the `cols` keys. For
a DataFrame, `cols` are combined along columns with the resulting
DataFrame. Returning a DataFrame is the clearest because it allows
column labeling.
A method is defined with `f` as the first argument, so do-block
notation can be used.
`by(d, cols, f)` is equivalent to `combine(map(f, groupby(d, cols)))`.
### Returns
* `::DataFrame`
### Examples
```julia
df = DataFrame(a = repeat([1, 2, 3, 4], outer=[2]),
b = repeat([2, 1], outer=[4]),
c = randn(8))
by(df, :a, d -> sum(d[:c]))
by(df, :a, d -> 2 * d[:c])
by(df, :a, d -> DataFrame(c_sum = sum(d[:c]), c_mean = mean(d[:c])))
by(df, :a, d -> DataFrame(c = d[:c], c_mean = mean(d[:c])))
by(df, [:a, :b]) do d
DataFrame(m = mean(d[:c]), v = var(d[:c]))
end
```
"""
by(d::AbstractDataFrame, cols, f::Function) = combine(map(f, groupby(d, cols)))
by(f::Function, d::AbstractDataFrame, cols) = by(d, cols, f)
#
# Aggregate convenience functions
#
# Applies a set of functions over a DataFrame, in the from of a cross-product
"""
Split-apply-combine that applies a set of functions over columns of an
AbstractDataFrame or GroupedDataFrame
```julia
aggregate(d::AbstractDataFrame, cols, fs)
aggregate(gd::GroupedDataFrame, fs)
```
### Arguments
* `d` : an AbstractDataFrame
* `gd` : a GroupedDataFrame
* `cols` : a column indicator (Symbol, Int, Vector{Symbol}, etc.)
* `fs` : a function or vector of functions to be applied to vectors
within groups; expects each argument to be a column vector
Each `fs` should return a value or vector. All returns must be the
same length.
### Returns
* `::DataFrame`
### Examples
```julia
df = DataFrame(a = repeat([1, 2, 3, 4], outer=[2]),
b = repeat([2, 1], outer=[4]),
c = randn(8))
aggregate(df, :a, sum)
aggregate(df, :a, [sum, mean])
aggregate(groupby(df, :a), [sum, mean])
df |> groupby(:a) |> [sum, mean] # equivalent
```
"""
aggregate(d::AbstractDataFrame, fs::Function) = aggregate(d, [fs])
function aggregate{T<:Function}(d::AbstractDataFrame, fs::Vector{T})
headers = _makeheaders(fs, _names(d))
_aggregate(d, fs, headers)
end
# Applies aggregate to non-key cols of each SubDataFrame of a GroupedDataFrame
aggregate(gd::GroupedDataFrame, fs::Function) = aggregate(gd, [fs])
function aggregate{T<:Function}(gd::GroupedDataFrame, fs::Vector{T})
headers = _makeheaders(fs, _setdiff(_names(gd), gd.cols))
combine(map(x -> _aggregate(without(x, gd.cols), fs, headers), gd))
end
(|>)(gd::GroupedDataFrame, fs::Function) = aggregate(gd, fs)
(|>){T<:Function}(gd::GroupedDataFrame, fs::Vector{T}) = aggregate(gd, fs)
# Groups DataFrame by cols before applying aggregate
function aggregate{S <: ColumnIndex, T <:Function}(d::AbstractDataFrame,
cols::Union{S, AbstractVector{S}},
fs::Union{T, Vector{T}})
aggregate(groupby(d, cols), fs)
end
function _makeheaders{T<:Function}(fs::Vector{T}, cn::Vector{Symbol})
fnames = _fnames(fs) # see other/utils.jl
scn = [string(x) for x in cn]
[Symbol("$(colname)_$(fname)") for fname in fnames, colname in scn][:]
end
function _aggregate{T<:Function}(d::AbstractDataFrame, fs::Vector{T}, headers::Vector{Symbol})
DataFrame(colwise(fs, d), headers)
end