@@ -34,33 +34,34 @@ using ForwardDiff
3434 @test WP == WP
3535
3636 x, y = coordinates (P)
37+ L = WP \ WQ
38+ R = Q \ P
39+
40+ ∂x = Derivative (P, (1 ,0 ))
41+ ∂y = Derivative (P, (0 ,1 ))
42+
43+ Dx = Q \ (∂x * P)
44+ Dy = Q \ (∂y * P)
45+
46+ X = P \ (x .* P)
47+ Y = P \ (y .* P)
48+
3749
3850 @testset " lowering/raising" begin
39- L = WP \ WQ
4051 @test WP[SVector (0.1 ,0.2 ),Block .(1 : 6 )]' L[Block .(1 : 6 ),Block .(1 : 4 )] ≈ WQ[SVector (0.1 ,0.2 ),Block .(1 : 4 )]'
41- R = Q \ P
4252 @test Q[SVector (0.1 ,0.2 ),Block .(1 : 4 )]' R[Block .(1 : 4 ),Block .(1 : 4 )] ≈ P[SVector (0.1 ,0.2 ),Block .(1 : 4 )]'
4353
4454 @test (DunklXuDisk () \ WeightedDunklXuDisk (1.0 ))[Block .(1 : N), Block .(1 : N)] ≈ (WeightedDunklXuDisk (0.0 ) \ WeightedDunklXuDisk (1.0 ))[Block .(1 : N), Block .(1 : N)]
4555 end
4656
4757
4858 @testset " jacobi" begin
49- X = P \ (x .* P)
50- Y = P \ (y .* P)
51-
5259 @test (L * R)[Block .(1 : N), Block .(1 : N)] ≈ (I - X^ 2 - Y^ 2 )[Block .(1 : N), Block .(1 : N)]
5360 @test P[SVector (0.1 ,0.2 ),Block .(1 : 5 )]' X[Block .(1 : 5 ),Block .(1 : 4 )] ≈ 0.1 P[SVector (0.1 ,0.2 ),Block .(1 : 4 )]'
5461 @test P[SVector (0.1 ,0.2 ),Block .(1 : 5 )]' Y[Block .(1 : 5 ),Block .(1 : 4 )] ≈ 0.2 P[SVector (0.1 ,0.2 ),Block .(1 : 4 )]'
5562 end
5663
5764 @testset " derivatives" begin
58- ∂x = Derivative (P, (1 ,0 ))
59- ∂y = Derivative (P, (0 ,1 ))
60-
61- Dx = Q \ (∂x * P)
62- Dy = Q \ (∂y * P)
63-
6465 @test Q[SVector (0.1 ,0.2 ),Block .(1 : 3 )]' Dx[Block .(1 : 3 ),Block .(1 : 4 )] ≈ [ForwardDiff. gradient (𝐱 -> DunklXuDisk {eltype(𝐱)} (P. β)[𝐱,k], SVector (0.1 ,0.2 ))[1 ] for k= 1 : 10 ]'
6566 Mx = Q \ (x .* Q)
6667 My = Q \ (y .* Q)
0 commit comments