You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardexpand all lines: README.md
+5-3
Original file line number
Diff line number
Diff line change
@@ -19,7 +19,7 @@ julia> using FastTransforms, LinearAlgebra
19
19
20
20
## Fast orthogonal polynomial transforms
21
21
22
-
The 33 orthogonal polynomial transforms are listed in `FastTransforms.kind2string.(0:32)`. Univariate transforms may be planned with the standard normalization or with orthonormalization. For multivariate transforms, the standard normalization may be too severe for floating-point computations, so it is omitted. Here are two examples:
22
+
The 34 orthogonal polynomial transforms are listed in `FastTransforms.kind2string.(0:33)`. Univariate transforms may be planned with the standard normalization or with orthonormalization. For multivariate transforms, the standard normalization may be too severe for floating-point computations, so it is omitted. Here are two examples:
[1] D. Ruiz—Antolín and A. Townsend. <ahref="https://doi.org/10.1137/17M1134822">A nonuniform fast Fourier transform based on low rank approximation</a>, *SIAM J. Sci. Comput.*, **40**:A529–A547, 2018.
161
161
162
-
[2]R. M. Slevinsky. <ahref="https://doi.org/10.1016/j.acha.2017.11.001">Fast and backward stable transforms between spherical harmonic expansions and bivariate Fourier series</a>, *Appl. Comput. Harmon. Anal.*, **47**:585—606, 2019.
162
+
[2]S. Olver, R. M. Slevinsky, and A. Townsend. <ahref="https://doi.org/10.1017/S0962492920000045">Fast algorithms using orthogonal polynomials</a>, *Acta Numerica*, **29**:573—699, 2020.
163
163
164
-
[3] R. M. Slevinsky, <ahref="https://arxiv.org/abs/1711.07866">Conquering the pre-computation in two-dimensional harmonic polynomial transforms</a>, arXiv:1711.07866, 2017.
164
+
[3] R. M. Slevinsky. <ahref="https://doi.org/10.1016/j.acha.2017.11.001">Fast and backward stable transforms between spherical harmonic expansions and bivariate Fourier series</a>, *Appl. Comput. Harmon. Anal.*, **47**:585—606, 2019.
165
+
166
+
[4] R. M. Slevinsky, <ahref="https://arxiv.org/abs/1711.07866">Conquering the pre-computation in two-dimensional harmonic polynomial transforms</a>, arXiv:1711.07866, 2017.
0 commit comments