|
| 1 | +using FastTransforms, BandedMatrices, LazyArrays, LinearAlgebra, Test |
| 2 | + |
| 3 | +@testset "GramMatrix" begin |
| 4 | + n = 128 |
| 5 | + for T in (Float32, Float64, BigFloat) |
| 6 | + R = plan_leg2cheb(T, n; normcheb=true)*I |
| 7 | + X = Tridiagonal([T(n)/(2n-1) for n in 1:n-1], zeros(T, n), [T(n)/(2n+1) for n in 1:n-1]) # Legendre X |
| 8 | + W = Symmetric(R'R) |
| 9 | + G = GramMatrix(W, X) |
| 10 | + F = cholesky(G) |
| 11 | + @test F.L*F.L' ≈ W |
| 12 | + @test F.U ≈ R |
| 13 | + |
| 14 | + R = plan_leg2cheb(T, n; normcheb=true, normleg=true)*I |
| 15 | + X = SymTridiagonal(zeros(T, n), [sqrt(T(n)^2/(4*n^2-1)) for n in 1:n-1]) # normalized Legendre X |
| 16 | + W = Symmetric(R'R) |
| 17 | + G = GramMatrix(W, X) |
| 18 | + F = cholesky(G) |
| 19 | + @test F.L*F.L' ≈ W |
| 20 | + @test F.U ≈ R |
| 21 | + |
| 22 | + b = 4 |
| 23 | + X = BandedMatrix(SymTridiagonal(zeros(T, n+b), [sqrt(T(n)^2/(4*n^2-1)) for n in 1:n+b-1])) # normalized Legendre X |
| 24 | + W = I+X^2+X^4 |
| 25 | + W = Symmetric(W[1:n, 1:n]) |
| 26 | + X = BandedMatrix(SymTridiagonal(zeros(T, n), [sqrt(T(n)^2/(4*n^2-1)) for n in 1:n-1])) # normalized Legendre X |
| 27 | + G = GramMatrix(W, X) |
| 28 | + @test bandwidths(G) == (b, b) |
| 29 | + F = cholesky(G) |
| 30 | + @test F.L*F.L' ≈ W |
| 31 | + |
| 32 | + X = BandedMatrix(SymTridiagonal(T[2n-1 for n in 1:n+b], T[-n for n in 1:n+b-1])) # Laguerre X, tests nonzero diagonal |
| 33 | + W = I+X^2+X^4 |
| 34 | + W = Symmetric(W[1:n, 1:n]) |
| 35 | + X = BandedMatrix(SymTridiagonal(T[2n-1 for n in 1:n], T[-n for n in 1:n-1])) # Laguerre X |
| 36 | + G = GramMatrix(W, X) |
| 37 | + @test bandwidths(G) == (b, b) |
| 38 | + F = cholesky(G) |
| 39 | + @test F.L*F.L' ≈ W |
| 40 | + end |
| 41 | + W = reshape([i for i in 1.0:n^2], n, n) |
| 42 | + X = reshape([i for i in 1.0:4n^2], 2n, 2n) |
| 43 | + @test_throws "different sizes" GramMatrix(W, X) |
| 44 | + X = X[1:n, 1:n] |
| 45 | + @test_throws "nonsymmetric" GramMatrix(W, X) |
| 46 | + @test_throws "nontridiagonal" GramMatrix(Symmetric(W), X) |
| 47 | +end |
| 48 | + |
| 49 | +@testset "ChebyshevGramMatrix" begin |
| 50 | + n = 128 |
| 51 | + for T in (Float32, Float64, BigFloat) |
| 52 | + μ = FastTransforms.chebyshevmoments1(T, 2n-1) |
| 53 | + G = ChebyshevGramMatrix(μ) |
| 54 | + F = cholesky(G) |
| 55 | + @test F.L*F.L' ≈ G |
| 56 | + R = plan_cheb2leg(T, n; normleg=true)*I |
| 57 | + @test F.U ≈ R |
| 58 | + |
| 59 | + α, β = (T(0.123), T(0.456)) |
| 60 | + μ = FastTransforms.chebyshevjacobimoments1(T, 2n-1, α, β) |
| 61 | + G = ChebyshevGramMatrix(μ) |
| 62 | + F = cholesky(G) |
| 63 | + @test F.L*F.L' ≈ G |
| 64 | + R = plan_cheb2jac(T, n, α, β; normjac=true)*I |
| 65 | + @test F.U ≈ R |
| 66 | + |
| 67 | + μ = -FastTransforms.chebyshevlogmoments1(T, 2n-1) |
| 68 | + G = ChebyshevGramMatrix(μ) |
| 69 | + F = cholesky(G) |
| 70 | + @test F.L*F.L' ≈ G |
| 71 | + |
| 72 | + μ = FastTransforms.chebyshevabsmoments1(T, 2n-1) |
| 73 | + G = ChebyshevGramMatrix(μ) |
| 74 | + F = cholesky(G) |
| 75 | + @test F.L*F.L' ≈ G |
| 76 | + |
| 77 | + μ = PaddedVector(T(1) ./ [1,2,3,4,5], 2n-1) |
| 78 | + G = ChebyshevGramMatrix(μ) |
| 79 | + @test bandwidths(G) == (4, 4) |
| 80 | + F = cholesky(G) |
| 81 | + @test F.L*F.L' ≈ G |
| 82 | + μd = Vector{T}(μ) |
| 83 | + Gd = ChebyshevGramMatrix(μd) |
| 84 | + Fd = cholesky(Gd) |
| 85 | + @test F.L ≈ Fd.L |
| 86 | + end |
| 87 | +end |
0 commit comments