-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstyle_transfer.py
237 lines (193 loc) · 9.68 KB
/
style_transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from PIL import Image
import torchvision.transforms as transforms
import torchvision.models as models
from matplotlib import pyplot as plt
import pandas as pd
from openpyxl import load_workbook
from module import Normalization, ContentLoss, StyleLoss
import os
class StyleTransfer:
def __init__(self, content_img_path, style_img_path):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
torch.set_default_device(self.device)
self.imsize = 512 if torch.cuda.is_available() else 128 # use small size if no gpu
self.loader = transforms.Compose([
transforms.Resize(self.imsize), # scale imported image
transforms.ToTensor()]) # transform it into a torch tensor
self.content_img = self.image_loader(content_img_path)
self.style_img = self.image_loader(style_img_path)
assert self.style_img.size() == self.content_img.size(), \
"we need to import style and content images of the same size"
self.cnn = models.vgg19(pretrained=True).features.to(self.device).eval()
self.cnn_normalization_mean = torch.tensor([0.485, 0.456, 0.406]).to(self.device)
self.cnn_normalization_std = torch.tensor([0.229, 0.224, 0.225]).to(self.device)
def image_loader(self, image_name):
image = Image.open(image_name)
# fake batch dimension required to fit network's input dimensions
image = self.loader(image).unsqueeze(0)
return image.to(self.device, torch.float)
@staticmethod
def imshow(tensor, title=None):
unloader = transforms.ToPILImage() # reconvert into PIL image
plt.ion()
image = tensor.cpu().clone() # we clone the tensor to not do changes on it
image = image.squeeze(0) # remove the fake batch dimension
image = unloader(image)
plt.imshow(image)
if title is not None:
plt.title(title)
plt.pause(0.001) # pause a bit so that plots are updated
def get_style_model_and_losses(self, content_img, style_img, content_layers, style_layers):
normalization = Normalization(self.cnn_normalization_mean, self.cnn_normalization_std).to(self.device)
print('Content_layers: ', content_layers)
print('Style Layers:', style_layers)
content_losses = []
style_losses = []
model = nn.Sequential(normalization)
i = 0
for layer in self.cnn.children():
if isinstance(layer, nn.Conv2d):
i += 1
name = f'conv_{i}'
elif isinstance(layer, nn.ReLU):
name = f'relu_{i}'
layer = nn.ReLU(inplace=False)
elif isinstance(layer, nn.MaxPool2d):
name = f'pool_{i}'
elif isinstance(layer, nn.BatchNorm2d):
name = f'bn_{i}'
else:
raise RuntimeError(f'Unrecognized layer: {layer.__class__.__name__}')
model.add_module(name, layer)
if name in content_layers:
target = model(content_img).detach()
content_loss = ContentLoss(target)
model.add_module(f"content_loss_{i}", content_loss)
content_losses.append(content_loss)
if name in style_layers:
target_feature = model(style_img).detach()
style_loss = StyleLoss(target_feature)
model.add_module(f"style_loss_{i}", style_loss)
style_losses.append(style_loss)
# trim off the layers after the last content and style losses
for i in range(len(model) - 1, -1, -1):
if isinstance(model[i], ContentLoss) or isinstance(model[i], StyleLoss):
break
model = model[:(i + 1)]
return model, style_losses, content_losses
@staticmethod
def get_input_optimizer(input_img, optimizer_choice):
print('Optimizer: ', optimizer_choice)
if optimizer_choice == 'lbfgs':
optimizer = optim.LBFGS([input_img.requires_grad_()])
elif optimizer_choice == 'adam':
optimizer = optim.Adam([input_img.requires_grad_()], lr=0.01) # You can adjust the learning rate
else:
raise ValueError("Unsupported optimizer choice")
return optimizer
def append_to_excel(self, experiment_params):
# Check if the Excel file exists, and create it if it doesn't
if not os.path.isfile("experiments.xlsx"):
# Create a new DataFrame with headers
df = pd.DataFrame(columns=experiment_params.keys())
# Save the DataFrame to the Excel file
df.to_excel("experiments.xlsx", index=False)
else:
# Load the existing data from the Excel file
df = pd.read_excel("experiments.xlsx")
# Extract values from the experiment_params dictionary
values_to_append = list(experiment_params.values())
# Create a DataFrame with the values to append
df_to_append = pd.DataFrame([values_to_append], columns=experiment_params.keys())
# Append the DataFrame to the existing data (or create a new DataFrame if empty)
df = df.append(df_to_append, ignore_index=True)
# Save the updated DataFrame to the Excel file
with pd.ExcelWriter("experiments.xlsx", engine="openpyxl", mode="a", if_sheet_exists="replace") as writer:
df.to_excel(writer, index=False)
def run_style_transfer(self, content_img, style_img, input_img, num_steps=300, style_weight=1000000, content_weight=1, content_layers=['conv_4'], style_layers=['conv_1', 'conv_2', 'conv_3', 'conv_4', 'conv_5'], tv_weight=0.0, optimizer_choice='lbfgs', loss_choice='generic'):
print('Building the style transfer model..')
print('num_steps: ', num_steps)
print('style_weight: ', style_weight)
print('content_weight: ', content_weight)
print('TV Weight: ', tv_weight)
print('loss_choice: ', loss_choice)
model, style_losses, content_losses = self.get_style_model_and_losses(content_img, style_img, content_layers, style_layers)
input_img.requires_grad_(True)
model.eval()
model.requires_grad_(False)
optimizer = self.get_input_optimizer(input_img, optimizer_choice)
print('Optimizing..')
run = [0]
content_loss_history = []
style_loss_history = []
while run[0] <= num_steps:
def closure():
# correct the values of updated input image
input_img.data.clamp_(0, 1)
optimizer.zero_grad()
model(input_img)
style_score = 0
content_score = 0
for sl in style_losses:
style_score += sl.loss
for cl in content_losses:
content_score += cl.loss
style_score *= style_weight
content_score *= content_weight
# Add total variation regularization
tv_loss = torch.sum(torch.abs(input_img[:, :, :, :-1] - input_img[:, :, :, 1:])) + \
torch.sum(torch.abs(input_img[:, :, :-1, :] - input_img[:, :, 1:, :]))
tv_loss *= tv_weight
if loss_choice == 'generic':
if tv_weight != 0.0:
loss = style_score + content_score + tv_loss # Include TV regularization in the loss
else:
loss = style_score + content_score
elif loss_choice == 'perceptual':
# Calculate the perceptual loss (VGG-style loss)
perceptual_loss = F.mse_loss(model(input_img), model(style_img))
perceptual_loss *= style_weight # Adjust the weight as needed
loss = perceptual_loss + content_score # Combine perceptual and content losses
loss.backward()
run[0] += 1
if run[0] % 50 == 0:
print(f"run {run}:")
print(f'Style Loss : {style_score.item():4f} Content Loss: {content_score.item():4f}')
content_loss_history.append(content_score.item())
style_loss_history.append(style_score.item())
print()
return style_score + content_score
optimizer.step(closure)
with torch.no_grad():
input_img.data.clamp_(0, 1)
# Save the hyperparameters and loss results to the Excel file
experiment_params = {
"style_weight": style_weight,
"content_weight": content_weight,
"num_steps": num_steps,
"content_layers": content_layers,
"tv_weight": tv_weight,
"optimizer_choice": optimizer_choice,
"loss_choice": loss_choice,
"content_loss": content_loss_history[-1],
"style_loss":style_loss_history[-1],
}
#self.append_to_excel(experiment_params)
return input_img
def save_output_image(self, output, file_path="./data/images/output.jpg"):
unloader = transforms.ToPILImage() # reconvert into PIL image
output = output.cpu().clone()
output = output.squeeze(0)
output = unloader(output)
output.save(file_path)
# Usage example:
# style_transfer = StyleTransfer("./data/images/dancing.jpg", "./data/images/picasso.jpg")
# output = style_transfer.run_style_transfer(style_transfer.content_img, style_transfer.style_img, style_transfer.content_img.clone())
# StyleTransfer.imshow(output, title='Output Image')
# plt.ioff()
# plt.show()
# style_transfer.save_output_image(output)