-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathdominate.py
70 lines (49 loc) · 2.01 KB
/
dominate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
import cv2
import numpy as np
class Dominator(object):
def __init__(self, domino_filename):
self.domino_image = cv2.imread(domino_filename)
def detect_blobs(self, image=None):
if image is None:
image = self.domino_image
params = cv2.SimpleBlobDetector_Params()
params.filterByCircularity = True
params.minCircularity = 0.85
detector = cv2.SimpleBlobDetector_create(params)
keypoints = detector.detect(image)
print "Keypoint Count: {0}".format(len(keypoints))
overlayed_blobs = cv2.drawKeypoints(image, keypoints, np.array([]), (0,0,255), cv2.DRAW_MATCHES_FLAGS_DEFAULT)
return overlayed_blobs
def get_mask(self, image=None):
if image is None:
image = self.domino_image
self.show_image(image=image)
gray_scene = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
_, thresh = cv2.threshold(gray_scene, 200, 255, cv2.THRESH_BINARY)
self.show_image(image=thresh)
kernel = np.ones((25,25),np.uint8)
closed = cv2.morphologyEx(thresh, cv2.MORPH_CLOSE, kernel)
ret, labels, stats, centroids = cv2.connectedComponentsWithStats(closed, connectivity=4)
for i in range(2, ret):
im = labels[labels==i]
print im.shape
# self.show_image(image = labels[labels==i])
print ret
print labels
print stats
print centroids
return closed
def show_image(self, title="Image Preview", image=None):
if image is None:
image = self.domino_image
cv2.imshow(title, image)#title, cv2.resize(image, (0,0), fx=0.2, fy=0.2))
while cv2.waitKey(100) != 1048603:
pass
if __name__ == "__main__":
dm = Dominator("data/IMG_4332.JPG")
mask = dm.get_mask()
dm.show_image(image=mask)
masked = cv2.bitwise_and(dm.domino_image, dm.domino_image, mask=mask)
dm.show_image(image=masked)
blobby = dm.detect_blobs(image=masked)
dm.show_image(image=blobby)