-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfeature_extractor_frm.py
148 lines (111 loc) · 5.03 KB
/
feature_extractor_frm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
# coding: utf-8
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import json
import argparse
import os
import time
import numpy as np
from PIL import Image
#
import tensorflow as tf
import i3d
_SAMPLE_VIDEO_FRAMES = 64
_IMAGE_SIZE = 224
_CHECKPOINT_PATHS = {
'rgb': 'data/checkpoints/rgb_scratch/model.ckpt',
'rgb600': 'data/checkpoints/rgb_scratch_kin600/model.ckpt',
'flow': 'data/checkpoints/flow_scratch/model.ckpt',
'rgb_imagenet': 'data/checkpoints/rgb_imagenet/model.ckpt',
'flow_imagenet': 'data/checkpoints/flow_imagenet/model.ckpt',
}
def feature_extractor():
# loading net
net = i3d.InceptionI3d(400, spatial_squeeze=True, final_endpoint='Logits')
rgb_input = tf.placeholder(tf.float32, shape=(batch_size, _SAMPLE_VIDEO_FRAMES, _IMAGE_SIZE, _IMAGE_SIZE, 3))
_, end_points = net(rgb_input, is_training=False, dropout_keep_prob=1.0)
end_feature = end_points['avg_pool3d']
sess = tf.Session()
rgb_variable_map = {}
for variable in tf.global_variables():
rgb_variable_map[variable.name.replace(':0', '')[len('inception_i3d/'):]] = variable
saver = tf.train.Saver(var_list=rgb_variable_map)
saver.restore(sess, _CHECKPOINT_PATHS['rgb_imagenet'])
video_list = open(VIDEO_PATH_FILE).readlines()
video_list = [name.strip() for name in video_list]
print('video_list', video_list)
if not os.path.isdir(OUTPUT_FEAT_DIR):
os.mkdir(OUTPUT_FEAT_DIR)
print('Total number of videos: %d'%len(video_list))
for cnt, video_name in enumerate(video_list):
video_path = os.path.join(VIDEO_DIR, video_name)
feat_path = os.path.join(OUTPUT_FEAT_DIR, video_name + '.npy')
if os.path.exists(feat_path):
print('Feature file for video %s already exists.'%video_name)
continue
print('video_path', video_path)
n_frame = len([ff for ff in os.listdir(video_path) if ff.endswith('.jpg')])
print('Total frames: %d'%n_frame)
features = []
n_feat = int(n_frame // 8)
n_batch = n_feat // batch_size + 1
print('n_frame: %d; n_feat: %d'%(n_frame, n_feat))
print('n_batch: %d'%n_batch)
for i in range(n_batch):
input_blobs = []
for j in range(batch_size):
input_blob = []
for k in range(L):
idx = i*batch_size*L + j*L + k
idx = int(idx)
idx = idx%n_frame + 1
image = Image.open(os.path.join(video_path, '%d.jpg'%idx))
image = image.resize((resize_w, resize_h))
image = np.array(image, dtype='float32')
'''
image[:, :, 0] -= 104.
image[:, :, 1] -= 117.
image[:, :, 2] -= 123.
'''
image[:, :, :] -= 127.5
image[:, :, :] /= 127.5
input_blob.append(image)
input_blob = np.array(input_blob, dtype='float32')
input_blobs.append(input_blob)
input_blobs = np.array(input_blobs, dtype='float32')
clip_feature = sess.run(end_feature, feed_dict={rgb_input: input_blobs})
clip_feature = np.reshape(clip_feature, (-1, clip_feature.shape[-1]))
features.append(clip_feature)
features = np.concatenate(features, axis=0)
features = features[:n_feat:2] # 16 frames per feature (since 64-frame snippet corresponds to 8 features in I3D)
feat_path = os.path.join(OUTPUT_FEAT_DIR, video_name + '.npy')
print('Saving features and probs for video: %s ...'%video_name)
np.save(feat_path, features)
print('%d: %s has been processed...'%(cnt, video_name))
if __name__ == "__main__":
parser = argparse.ArgumentParser()
print('******--------- Extract I3D features ------*******')
parser.add_argument('-g', '--GPU', type=int, default=0, help='GPU id')
parser.add_argument('-of', '--OUTPUT_FEAT_DIR', dest='OUTPUT_FEAT_DIR', type=str,
default='./dataset/Charades/features/i3d/feats_i3d_rgb_npy/',
help='Output feature path')
parser.add_argument('-vpf', '--VIDEO_PATH_FILE', type=str,
default='charades_sta_videos.txt',
help='input video list')
parser.add_argument('-vd', '--VIDEO_DIR', type=str,
default='./dataset/Charades/frames_16_fps/',
help='frame directory')
args = parser.parse_args()
params = vars(args) # convert to ordinary dict
OUTPUT_FEAT_DIR = params['OUTPUT_FEAT_DIR']
VIDEO_PATH_FILE = params['VIDEO_PATH_FILE']
VIDEO_DIR = params['VIDEO_DIR']
RUN_GPU = params['GPU']
resize_w = 224
resize_h = 224
L = 64
batch_size = 1
# set gpu id
os.environ['CUDA_VISIBLE_DEVICES'] = str(RUN_GPU)
feature_extractor()