forked from wzmsltw/BSN-boundary-sensitive-network
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPost_processing.py
executable file
·141 lines (119 loc) · 4.29 KB
/
Post_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
# -*- coding: utf-8 -*-
import numpy as np
import pandas as pd
import json
def load_json(file):
with open(file) as json_file:
data = json.load(json_file)
return data
def getDatasetDict():
df=pd.read_csv("./data/activitynet_annotations/video_info_new.csv")
json_data= load_json("./data/activitynet_annotations/anet_anno_action.json")
database=json_data
train_dict={}
val_dict={}
test_dict={}
for i in range(len(df)):
video_name=df.video.values[i]
video_info=database[video_name]
video_new_info={}
video_new_info['duration_frame']=video_info['duration_frame']
video_new_info['duration_second']=video_info['duration_second']
video_new_info["feature_frame"]=video_info['feature_frame']
video_subset=df.subset.values[i]
video_new_info['annotations']=video_info['annotations']
if video_subset=="training":
train_dict[video_name]=video_new_info
elif video_subset=="validation":
val_dict[video_name]=video_new_info
elif video_subset=="testing":
test_dict[video_name]=video_new_info
return train_dict,val_dict,test_dict
def IOU(s1,e1,s2,e2):
if (s2>e1) or (s1>e2):
return 0
Aor=max(e1,e2)-min(s1,s2)
Aand=min(e1,e2)-max(s1,s2)
return float(Aand)/Aor
def NMS(df,nms_threshold):
df=df.sort(columns="score",ascending=False)
tstart=list(df.xmin.values[:])
tend=list(df.xmax.values[:])
tscore=list(df.score.values[:])
rstart=[]
rend=[]
rscore=[]
while len(tstart)>1 and len(rscore)<101:
idx=1
while idx<len(tstart):
if IOU(tstart[0],tend[0],tstart[idx],tend[idx])>nms_threshold:
tstart.pop(idx)
tend.pop(idx)
tscore.pop(idx)
else:
idx+=1
rstart.append(tstart[0])
rend.append(tend[0])
rscore.append(tscore[0])
tstart.pop(0)
tend.pop(0)
tscore.pop(0)
newDf=pd.DataFrame()
newDf['score']=rscore
newDf['xmin']=rstart
newDf['xmax']=rend
return newDf
def Soft_NMS(df):
df=df.sort_values(by="score",ascending=False)
tstart=list(df.xmin.values[:])
tend=list(df.xmax.values[:])
tscore=list(df.score.values[:])
rstart=[]
rend=[]
rscore=[]
while len(tscore)>1 and len(rscore)<101:
max_index=tscore.index(max(tscore))
for idx in range(0,len(tscore)):
if idx!=max_index:
tmp_iou=IOU(tstart[max_index],tend[max_index],tstart[idx],tend[idx])
tmp_width=tend[max_index]-tstart[max_index]
if tmp_iou>0.65+0.25*tmp_width:#*1/(1+np.exp(-max_index)):
tscore[idx]=tscore[idx]*np.exp(-np.square(tmp_iou)/0.75)
rstart.append(tstart[max_index])
rend.append(tend[max_index])
rscore.append(tscore[max_index])
tstart.pop(max_index)
tend.pop(max_index)
tscore.pop(max_index)
newDf=pd.DataFrame()
newDf['score']=rscore
newDf['xmin']=rstart
newDf['xmax']=rend
return newDf
def min_max(x):
x=(x-min(x))/(max(x)-min(x))
return x
train_dict,val_dict,test_dict=getDatasetDict()
video_list=val_dict.keys()
result_dict={}
for i in range(len(video_list)):
video_name=video_list[i]
df=pd.read_csv("./output/PEM_results/"+video_name+".csv")
df['score']=df.iou_score.values[:]*df.xmin_score.values[:]*df.xmax_score.values[:]
if len(df)>1:
df=Soft_NMS(df)
df=df.sort_values(by="score",ascending=False)
video_info=val_dict[video_name]
video_duration=float(video_info["duration_frame"]/16*16)/video_info["duration_frame"]*video_info["duration_second"]
print video_duration, video_info["duration_second"]
proposal_list=[]
for j in range(min(100,len(df))):
tmp_proposal={}
tmp_proposal["score"]=df.score.values[j]
tmp_proposal["segment"]=[max(0,df.xmin.values[j])*video_duration,min(1,df.xmax.values[j])*video_duration]
proposal_list.append(tmp_proposal)
result_dict[video_name[2:]]=proposal_list
output_dict={"version":"VERSION 1.3","results":result_dict,"external_data":{}}
outfile=open("./output/result_proposal.json","w")
json.dump(output_dict,outfile)
outfile.close()