-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy path52_Week_Overview.py
89 lines (71 loc) · 1.97 KB
/
52_Week_Overview.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
import pandas as pd
import math
import time
import datetime
import matplotlib.pyplot as plt
import seaborn as sns
import pandas_datareader as pdr
sns.set_theme()
# Dates
today = datetime.datetime.today()
to_date = today.strftime('%d/%m/%Y')
days_back = datetime.timedelta(days=365)
date_ago = today - days_back
from_date = date_ago.strftime('%d/%m/%Y')
# Data Retreival
def get_sp500_tickers():
"""Retrieves S&P500 data from Wikipedia url
Returns:
df: Pandas Dataframe with the values from the url.
"""
url = 'https://en.wikipedia.org/wiki/List_of_S%26P_500_companies'
html = pd.read_html(url, header = 0)
df = html[0]
return df
a = get_sp500_tickers()
stocks = []
sector = []
close = []
high = []
low = []
values = []
for stock in a['Symbol']:
try:
print(f'Fetching...{stock}')
time.sleep(1)
data = pdr.get_data_yahoo(stock,from_date, to_date)['Adj Close']
last = data[-1]
max = data.max()
lowest = data.min()
diff = (last/max)
perDiff = ((diff -1) * 100)
values.append(perDiff)
high.append(max)
low.append(lowest)
close.append(last)
except Exception as e:
print(f'Error on fetching {stock}')
print(e)
values.append(math.nan)
high.append(math.nan)
low.append(math.nan)
close.append(math.nan)
pass
a['52W High [%]'] = values
a['Highest'] = high
a['Lowest'] = low
a['Last'] = close
media = a['52W High [%]'].mean()
labels = a['Symbol']
difference = plt.scatter(a.index, a['52W High [%]'], color='r')
plt.title('S&P_500 Stocks % Difference over 52W High')
plt.axhline(y=0, color='r', linestyle='-')
plt.axhline(y=media, color='b', linestyle='--', label=(f'Mean: {media:.2f} %'))
plt.legend()
plt.xticks(a.index, labels, rotation=90)
plt.locator_params(axis='x', nbins=len(a)/5)
plt.ylabel('52W High [%]')
plt.ylim(a['52W High [%]'].min()-5 , 5)
# Save to csv
a.to_csv('SPvalues.csv')
plt.show()