-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathperformance_profile.py
97 lines (83 loc) · 3.15 KB
/
performance_profile.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import time
import torch
from base_vit import ViT
from lora import LoRA_ViT
import numpy as np
BATCH_SIZE = 12
GPU = True
img = torch.randn(BATCH_SIZE, 3, 384, 384)
target = torch.randn(BATCH_SIZE, 1000)
criterion = torch.nn.MSELoss()
if GPU:
img = img.to("cuda")
target = target.to("cuda")
class TimeProfile:
@staticmethod
def test_base():
model = ViT('B_16_imagenet1k')
if GPU:
model = model.to("cuda")
preds = model(img)
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
loss = criterion(preds, target)
start_time = time.time()
loss.backward()
optimizer.step()
end_time = time.time()
time_cost = end_time - start_time
print(f"base backpropagation took {time_cost:.4f} seconds")
return time_cost
@staticmethod
def test_lora():
model = ViT('B_16_imagenet1k')
lora_model = LoRA_ViT(model, r=4, alpha=4, num_classes=1000)
if GPU:
lora_model = lora_model.to("cuda")
preds = lora_model(img)
optimizer = torch.optim.SGD(lora_model.parameters(), lr=0.1)
loss = criterion(preds, target)
start_time = time.time()
loss.backward()
optimizer.step()
end_time = time.time()
time_cost = end_time - start_time
print(f"LoRA backpropagation took {time_cost:.4f} seconds")
return time_cost
class GRAMProfile:
@staticmethod
def test_base():
model = ViT('B_16_imagenet1k')
if GPU:
model = model.to("cuda")
optimizer = torch.optim.SGD(model.parameters(), lr=0.1)
optimizer.zero_grad()
preds = model(img)
torch.cuda.reset_peak_memory_stats()
loss = criterion(preds, target)
loss.backward()
optimizer.step()
print(f"Max memory used during backpropagation: {torch.cuda.max_memory_allocated() / 1024**2:.2f} MB")
return torch.cuda.max_memory_allocated() / 1024**2
@staticmethod
def test_lora():
model = ViT('B_16_imagenet1k')
lora_model = LoRA_ViT(model, r=4, alpha=4, num_classes=1000, lora_layer=)
if GPU:
lora_model = lora_model.to("cuda")
optimizer = torch.optim.SGD(lora_model.parameters(), lr=0.1)
optimizer.zero_grad()
preds = lora_model(img)
torch.cuda.reset_peak_memory_stats()
loss = criterion(preds, target)
loss.backward()
optimizer.step()
print(f"Max memory used during backpropagation: {torch.cuda.max_memory_allocated() / 1024**2:.2f} MB")
return torch.cuda.max_memory_allocated() / 1024**2
results_base = np.array([TimeProfile.test_base() for _ in range(10)])
results_lora = np.array([TimeProfile.test_lora() for _ in range(10)])
print(f"Base\nMean:{results_base.mean()} Std:{results_base.std()}")
print(f"LoRA\nMean:{results_lora.mean()} Std:{results_lora.std()}")
results_base = np.array([GRAMProfile.test_base() for _ in range(10)])
results_lora = np.array([GRAMProfile.test_lora() for _ in range(10)])
print(f"Base\nMean:{results_base.mean()} Std:{results_base.std()}")
print(f"LoRA\nMean:{results_lora.mean()} Std:{results_lora.std()}")