forked from prityush9304/Hacktoberfest-2021
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrr.py
192 lines (81 loc) · 3.17 KB
/
rr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
def findWaitingTime(processes, n, bt,
wt, quantum):
rem_bt = [0] * n
# Copy the burst time into rt[]
for i in range(n):
rem_bt[i] = bt[i]
t = 0 # Current time
# Keep traversing processes in round
# robin manner until all of them are
# not done.
while(1):
done = True
# Traverse all processes one by
# one repeatedly
for i in range(n):
# If burst time of a process is greater
# than 0 then only need to process further
if (rem_bt[i] > 0) :
done = False # There is a pending process
if (rem_bt[i] > quantum) :
# Increase the value of t i.e. shows
# how much time a process has been processed
t += quantum
# Decrease the burst_time of current
# process by quantum
rem_bt[i] -= quantum
# If burst time is smaller than or equal
# to quantum. Last cycle for this process
else:
# Increase the value of t i.e. shows
# how much time a process has been processed
t = t + rem_bt[i]
# Waiting time is current time minus
# time used by this process
wt[i] = t - bt[i]
# As the process gets fully executed
# make its remaining burst time = 0
rem_bt[i] = 0
# If all processes are done
if (done == True):
break
# Function to calculate turn around time
def findTurnAroundTime(processes, n, bt, wt, tat):
# Calculating turnaround time
for i in range(n):
tat[i] = bt[i] + wt[i]
# Function to calculate average waiting
# and turn-around times.
def findavgTime(processes, n, bt, quantum):
wt = [0] * n
tat = [0] * n
# Function to find waiting time
# of all processes
findWaitingTime(processes, n, bt,
wt, quantum)
# Function to find turn around time
# for all processes
findTurnAroundTime(processes, n, bt,
wt, tat)
# Display processes along with all details
print("Processes Burst Time Waiting",
"Time Turn-Around Time")
total_wt = 0
total_tat = 0
for i in range(n):
total_wt = total_wt + wt[i]
total_tat = total_tat + tat[i]
print(" ", i + 1, "\t\t", bt[i],
"\t\t", wt[i], "\t\t", tat[i])
print("\nAverage waiting time = %.5f "%(total_wt /n) )
print("Average turn around time = %.5f "% (total_tat / n))
# Driver code
if _name_ =="_main_":
# Process id's
proc = [1, 2, 3]
n = 3
# Burst time of all processes
burst_time = [10, 5, 8]
# Time quantum
quantum = 2;
findavgTime(proc, n, burst_time