-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProperties.agda
289 lines (255 loc) · 14.7 KB
/
Properties.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
module ROmega.Types.Substitution.Properties where
open import Agda.Primitive
open import Relation.Binary.PropositionalEquality using (_≡_; refl; sym; trans; cong; cong-app)
open import Data.Product
renaming (proj₁ to fst; proj₂ to snd)
open import ROmega.Kinds
open import ROmega.Types
open import ROmega.Types.Substitution
open import ROmega.Postulates.FunExt
--------------------------------------------------------------------------------
-- Preservation of meaning across type-var maps, predicate maps, type maps, and
-- contexts.
Δ-map-preservation : ∀ {ℓ₁ ℓ₂}
(Δ₁ : KEnv ℓ₁) (Δ₂ : KEnv ℓ₂)
(H₁ : ⟦ Δ₁ ⟧ke)(H₂ : ⟦ Δ₂ ⟧ke) →
(f : Δ-map Δ₁ Δ₂) → Setω
Δ-map-preservation {ℓ₁} {ℓ₂} Δ₁ Δ₂ H₁ H₂ f =
∀ {ℓ₃} {κ : Kind ℓ₃} →
(x : TVar Δ₁ κ) → _≡_ {a = lsuc ℓ₃} (⟦ x ⟧tv H₁) (⟦ f x ⟧tv H₂)
τ-map-preservation : ∀ {ℓ₁ ℓ₂}
(Δ₁ : KEnv ℓ₁) (Δ₂ : KEnv ℓ₂) →
(H₁ : ⟦ Δ₁ ⟧ke)(H₂ : ⟦ Δ₂ ⟧ke) →
(f : τ-map Δ₁ Δ₂) → Setω
τ-map-preservation {ℓ₁} Δ₁ Δ₂ H₁ H₂ f =
∀ {ℓ₃} {κ : Kind ℓ₃} →
(τ : Type Δ₁ κ) → _≡_ {a = lsuc ℓ₃} (⟦ τ ⟧t H₁) (⟦ f τ ⟧t H₂)
π-map-preservation : ∀ {ℓ₁ ℓ₂}
(Δ₁ : KEnv ℓ₁) (Δ₂ : KEnv ℓ₂) →
(H₁ : ⟦ Δ₁ ⟧ke)(H₂ : ⟦ Δ₂ ⟧ke) →
(f : π-map Δ₁ Δ₂) → Setω
π-map-preservation {ℓ₁} Δ₁ Δ₂ H₁ H₂ f =
∀ {ℓ₃}{κ : Kind ℓ₃}
(π : Pred Δ₁ κ) → _≡_ {a = (lsuc (lsuc ℓ₃))} (⟦ π ⟧p H₁) (⟦ f π ⟧p H₂)
Context-preservation : ∀ {ℓ₁ ℓ₂}
(Δ₁ : KEnv ℓ₁) (Δ₂ : KEnv ℓ₂)
(H₁ : ⟦ Δ₁ ⟧ke)(H₂ : ⟦ Δ₂ ⟧ke) →
(f : Context Δ₁ Δ₂) → Setω
Context-preservation {ℓ₁} {ℓ₂} Δ₁ Δ₂ H₁ H₂ f =
∀ {ℓ₃} {κ : Kind ℓ₃} →
(x : TVar Δ₁ κ) → _≡_ {a = lsuc ℓ₃} (⟦ x ⟧tv H₁) (⟦ f x ⟧t H₂)
--------------------------------------------------------------------------------
-- demo on id.
id : ∀ {ℓ}{X : Set ℓ} → X → X
id x = x
id-pres : ∀ {ℓ₁} (Δ₁ : KEnv ℓ₁) (H : ⟦ Δ₁ ⟧ke) →
Δ-map-preservation Δ₁ Δ₁ H H id
id-pres Δ₁ H x = refl
--------------------------------------------------------------------------------
-- if `f` is a *meaning preserving* Δ-map, then so is its extension.
ext-pres : ∀ {ℓ₁ ℓ₂ ℓ₃}
(Δ₁ : KEnv ℓ₁) (Δ₂ : KEnv ℓ₂)
(H₁ : ⟦ Δ₁ ⟧ke) (H₂ : ⟦ Δ₂ ⟧ke)
{κ : Kind ℓ₃} →
(f : Δ-map Δ₁ Δ₂) →
(Δ-pres : Δ-map-preservation Δ₁ Δ₂ H₁ H₂ f) →
∀ (X : ⟦ κ ⟧k) → Δ-map-preservation (Δ₁ , κ) (Δ₂ , κ) (H₁ , X) (H₂ , X) (ext f)
ext-pres Δ₁ Δ₂ H₁ H₂ f Δ-pres X Z = refl
ext-pres Δ₁ Δ₂ H₁ H₂ f Δ-pres X (S v) = Δ-pres v
--------------------------------------------------------------------------------
-- if `f` is a *meaning preserving* Δ-map, then so is the promotion of `f` to a
-- τ-map.
τ-preservation : ∀ {ℓ₁ ℓ₂}
(Δ₁ : KEnv ℓ₁) (Δ₂ : KEnv ℓ₂) →
(H₁ : ⟦ Δ₁ ⟧ke)(H₂ : ⟦ Δ₂ ⟧ke) →
(f : Δ-map Δ₁ Δ₂) →
(Δ-pres : Δ-map-preservation Δ₁ Δ₂ H₁ H₂ f) →
τ-map-preservation Δ₁ Δ₂ H₁ H₂ (rename f)
π-preservation : ∀ {ℓ₁ ℓ₂}
(Δ₁ : KEnv ℓ₁) (Δ₂ : KEnv ℓ₂) →
(H₁ : ⟦ Δ₁ ⟧ke)(H₂ : ⟦ Δ₂ ⟧ke) →
(f : Δ-map Δ₁ Δ₂) →
(Δ-pres : Δ-map-preservation Δ₁ Δ₂ H₁ H₂ f) →
π-map-preservation Δ₁ Δ₂ H₁ H₂ (renamePred f)
-- Interesting cases.
τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres (tvar x') = Δ-pres x' -- Δ-pres H H' x
τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres (`∀ κ τ) =
∀-extensionality
extensionality
(λ z → ⟦ τ ⟧t (H₁ , z))
(λ z → ⟦ rename (ext f) τ ⟧t (H₂ , z))
τ-pres
where
τ-pres : (x : ⟦ κ ⟧k) → ⟦ τ ⟧t (H₁ , x) ≡ ⟦ rename (ext f) τ ⟧t (H₂ , x)
τ-pres x = τ-preservation
(Δ₁ , κ) (Δ₂ , κ)
(H₁ , x) (H₂ , x)
(ext f)
(ext-pres Δ₁ Δ₂ H₁ H₂ f Δ-pres x)
τ
τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres (`λ κ τ) = extensionality τ-pres
where
τ-pres : (x : ⟦ κ ⟧k) → ⟦ τ ⟧t (H₁ , x) ≡ ⟦ rename (ext f) τ ⟧t (H₂ , x)
τ-pres x = τ-preservation
(Δ₁ , κ) (Δ₂ , κ)
(H₁ , x) (H₂ , x)
(ext f)
(ext-pres Δ₁ Δ₂ H₁ H₂ f Δ-pres x)
τ
-- -- Uninteresting Cases.
τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres U = refl
τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres (lab x) = refl
τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres (τ₁ `→ τ₂)
rewrite τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres τ₁
| τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres τ₂ = refl
τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres (τ ·[ υ ])
rewrite τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres τ
| τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres υ = refl
τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres (τ ▹ υ)
rewrite τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres τ
| τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres υ = refl
τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres (τ R▹ υ)
rewrite τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres τ
| τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres υ = refl
τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres ⌊ τ ⌋
rewrite τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres τ = refl
τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres (Π τ)
rewrite τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres τ = refl
τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres (Type.Σ τ)
rewrite τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres τ = refl
τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres (⌈ τ ⌉· ρ)
rewrite τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres τ
| τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres ρ = refl
τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres (ρ ·⌈ τ ⌉)
rewrite τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres τ |
τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres ρ = refl
τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres (π ⇒ τ)
rewrite π-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres π
| τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres τ = refl
τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres ∅ = refl
π-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres (ρ₁ ≲ ρ₂)
rewrite τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres ρ₁
| τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres ρ₂ = refl
π-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres (ρ₁ · ρ₂ ~ ρ₃)
rewrite τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres ρ₁
| τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres ρ₂
| τ-preservation Δ₁ Δ₂ H₁ H₂ f Δ-pres ρ₃ = refl
--------------------------------------------------------------------------------
-- If f is a *meaning preserving* Context, then so is its extension and
-- simultaneous substitution.
exts-pres : ∀ {ℓ₁ ℓ₂ ℓ₃}
(Δ₁ : KEnv ℓ₁) (Δ₂ : KEnv ℓ₂)
(H₁ : ⟦ Δ₁ ⟧ke) (H₂ : ⟦ Δ₂ ⟧ke)
{κ : Kind ℓ₃} →
(f : Context Δ₁ Δ₂) →
(Δ-pres : Context-preservation Δ₁ Δ₂ H₁ H₂ f) →
∀ (X : ⟦ κ ⟧k) → Context-preservation (Δ₁ , κ) (Δ₂ , κ) (H₁ , X) (H₂ , X) (exts f)
exts-pres Δ₁ Δ₂ H₁ H₂ f σ-pres X Z = refl
exts-pres Δ₁ Δ₂ H₁ H₂ {κ} f σ-pres X (S c)
rewrite sym (τ-preservation Δ₂ (Δ₂ , κ) H₂ (H₂ , X) S (λ _ → refl) (f c))
| sym (σ-pres c) = refl
--------------------------------------------------------------------------------
-- if f is a meaning preserving Context, then so is the the substitution of f
-- (Or: lifting f to a τ-map).
σ/τ-preservation : ∀ {ℓ₁ ℓ₂}
(Δ₁ : KEnv ℓ₁) (Δ₂ : KEnv ℓ₂) →
(H₁ : ⟦ Δ₁ ⟧ke)(H₂ : ⟦ Δ₂ ⟧ke) →
(f : Context Δ₁ Δ₂) →
(σ-pres : Context-preservation Δ₁ Δ₂ H₁ H₂ f) →
τ-map-preservation Δ₁ Δ₂ H₁ H₂ (subst f)
σ/π-preservation : ∀ {ℓ₁ ℓ₂}
(Δ₁ : KEnv ℓ₁) (Δ₂ : KEnv ℓ₂) →
(H₁ : ⟦ Δ₁ ⟧ke)(H₂ : ⟦ Δ₂ ⟧ke) →
(f : Context Δ₁ Δ₂) →
(σ-pres : Context-preservation Δ₁ Δ₂ H₁ H₂ f) →
π-map-preservation Δ₁ Δ₂ H₁ H₂ (substPred f)
σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres (tvar x) = σ-pres x
σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres (`∀ κ τ) =
∀-extensionality
extensionality
(λ z → ⟦ τ ⟧t (H₁ , z))
(λ z → ⟦ subst (exts f) τ ⟧t (H₂ , z))
τ-pres
where
τ-pres : (x : ⟦ κ ⟧k) → ⟦ τ ⟧t (H₁ , x) ≡ ⟦ subst (exts f) τ ⟧t (H₂ , x)
τ-pres x = σ/τ-preservation
(Δ₁ , κ) (Δ₂ , κ)
(H₁ , x) (H₂ , x)
(exts f)
(exts-pres Δ₁ Δ₂ H₁ H₂ f σ-pres x)
τ
σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres (`λ κ τ) = extensionality τ-pres
where
τ-pres : (x : ⟦ κ ⟧k) → ⟦ τ ⟧t (H₁ , x) ≡ ⟦ subst (exts f) τ ⟧t (H₂ , x)
τ-pres x = σ/τ-preservation
(Δ₁ , κ) (Δ₂ , κ)
(H₁ , x) (H₂ , x)
(exts f)
(exts-pres Δ₁ Δ₂ H₁ H₂ f σ-pres x)
τ
σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres (π ⇒ τ)
rewrite σ/π-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres π
| σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres τ = refl
-- -- Uninteresting Cases.
σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres U = refl
σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres (lab x) = refl
σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres (τ₁ `→ τ₂)
rewrite σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres τ₁
| σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres τ₂ = refl
σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres (τ ·[ υ ])
rewrite σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres τ
| σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres υ = refl
σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres (τ ▹ υ)
rewrite σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres τ
| σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres υ = refl
σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres (τ R▹ υ)
rewrite σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres τ
| σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres υ = refl
σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres ⌊ τ ⌋
rewrite σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres τ = refl
σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres (Π τ)
rewrite σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres τ = refl
σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres (Type.Σ τ)
rewrite σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres τ = refl
σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres (⌈ τ ⌉· ρ)
rewrite σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres τ
| σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres ρ = refl
σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres ( ρ ·⌈ τ ⌉)
rewrite σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres τ |
σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres ρ = refl
σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres ∅ = refl
σ/π-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres (τ₁ ≲ τ₂)
rewrite σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres τ₁
| σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres τ₂ = refl
σ/π-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres (τ₁ · τ₂ ~ τ₃)
rewrite σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres τ₁
| σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres τ₂
| σ/τ-preservation Δ₁ Δ₂ H₁ H₂ f σ-pres τ₃ = refl
--------------------------------------------------------------------------------
-- Substitution Lemma.
Substitution : ∀ {ℓΔ ℓκ ℓκ'} {Δ : KEnv ℓΔ} {κ : Kind ℓκ} {κ' : Kind ℓκ'}
(τ : Type (Δ , κ') κ) (υ : Type Δ κ') H →
⟦ τ ⟧t (H , ⟦ υ ⟧t H) ≡ ⟦ subst (Z↦ υ) τ ⟧t H
Substitution {ℓΔ} {ℓκ} {ℓκ'} {Δ = Δ} {κ' = κ'} τ υ H = σ/τ-preservation
(Δ , κ') Δ ((H , ⟦ υ ⟧t H)) H (Z↦ υ) ctx-pres τ
where
ctx-pres : Context-preservation (Δ , κ') Δ (H , ⟦ υ ⟧t H) H (Z↦ υ)
ctx-pres Z = refl
ctx-pres (S x) = refl
--------------------------------------------------------------------------------
-- Weakening of typing judgments preserves meaning.
Weakening : ∀ {ℓΔ ℓκ ℓκ'} {Δ : KEnv ℓΔ} {κ : Kind ℓκ} {κ' : Kind ℓκ'} →
(τ : Type Δ κ) (H : ⟦ Δ ⟧ke) (X : ⟦ κ' ⟧k) →
⟦ τ ⟧t H ≡ ⟦ weaken τ ⟧t (H , X)
Weakening {Δ = Δ} {κ' = κ'} τ H X =
τ-preservation Δ (Δ , κ') H (H , X) S (λ _ → refl) τ
Weakening₂ : ∀ {ℓΔ ℓκ ℓκA ℓκB} {Δ : KEnv ℓΔ}
{κ : Kind ℓκ} {κA : Kind ℓκA} {κB : Kind ℓκB} →
(τ : Type Δ κ) (H : ⟦ Δ ⟧ke) (A : ⟦ κA ⟧k) (B : ⟦ κB ⟧k) →
⟦ τ ⟧t H ≡ ⟦ weaken (weaken τ) ⟧t ((H , A) , B)
Weakening₂ τ H A B = trans (Weakening τ H A) (Weakening (weaken τ) (H , A) B)
Weakening₃ : ∀ {ℓΔ ℓκ ℓκA ℓκB ℓκC} {Δ : KEnv ℓΔ}
{κ : Kind ℓκ} {κA : Kind ℓκA} {κB : Kind ℓκB} {κC : Kind ℓκC} →
(τ : Type Δ κ) (H : ⟦ Δ ⟧ke) (A : ⟦ κA ⟧k) (B : ⟦ κB ⟧k) (C : ⟦ κC ⟧k) →
⟦ τ ⟧t H ≡ ⟦ weaken (weaken (weaken τ)) ⟧t (((H , A) , B) , C)
Weakening₃ τ H A B C = trans (Weakening₂ τ H A B) (Weakening (weaken (weaken τ)) ((H , A) , B) C)