|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Power Up Research Software Development with Github Copilot\n" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "markdown", |
| 12 | + "metadata": {}, |
| 13 | + "source": [ |
| 14 | + "In this notebook, you will have the creative freedom to work with any dataset of your interest. Below are some sources for datasets that may be fun to work with.\n", |
| 15 | + "\n", |
| 16 | + "- [RODA](https://registry.opendata.aws/) - The Registry of Open Data on AWS (RODA) makes it easy for people to find datasets that are publicly available through AWS.\n", |
| 17 | + "\n", |
| 18 | + "- [UCI Machine Learning Repository](https://archive.ics.uci.edu/datasets) - The UCI Machine Learning Repository is a collection of databases, domain theories, and data generators that are used by the machine learning community for the empirical analysis of machine learning algorithms.\n", |
| 19 | + "\n", |
| 20 | + "- [scikit](https://scikit-learn.org/stable/datasets.html) - Scikit-learn is a popular machine learning library in Python. It provides various datasets for practice and experimentation, often used in tutorials and examples to demonstrate machine learning algorithms and techniques." |
| 21 | + ] |
| 22 | + }, |
| 23 | + { |
| 24 | + "cell_type": "markdown", |
| 25 | + "metadata": {}, |
| 26 | + "source": [ |
| 27 | + "### 1.0 Set-up" |
| 28 | + ] |
| 29 | + }, |
| 30 | + { |
| 31 | + "cell_type": "code", |
| 32 | + "execution_count": null, |
| 33 | + "metadata": {}, |
| 34 | + "outputs": [], |
| 35 | + "source": [ |
| 36 | + "import pandas as pd\n", |
| 37 | + "import numpy as np\n", |
| 38 | + "import matplotlib.pyplot as plt\n", |
| 39 | + "import seaborn as sns" |
| 40 | + ] |
| 41 | + }, |
| 42 | + { |
| 43 | + "cell_type": "code", |
| 44 | + "execution_count": null, |
| 45 | + "metadata": {}, |
| 46 | + "outputs": [], |
| 47 | + "source": [ |
| 48 | + "%pip install ucimlrepo" |
| 49 | + ] |
| 50 | + }, |
| 51 | + { |
| 52 | + "cell_type": "code", |
| 53 | + "execution_count": null, |
| 54 | + "metadata": {}, |
| 55 | + "outputs": [], |
| 56 | + "source": [ |
| 57 | + "from ucimlrepo import fetch_ucirepo \n", |
| 58 | + " \n", |
| 59 | + "# fetch dataset \n", |
| 60 | + "bank_marketing = fetch_ucirepo(id=222) \n", |
| 61 | + " \n", |
| 62 | + "# data (as pandas dataframes) \n", |
| 63 | + "X = bank_marketing.data.features \n", |
| 64 | + "y = bank_marketing.data.targets \n", |
| 65 | + " \n", |
| 66 | + "# metadata \n", |
| 67 | + "print(bank_marketing.metadata) \n", |
| 68 | + " \n", |
| 69 | + "# variable information \n", |
| 70 | + "print(bank_marketing.variables) \n" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "code", |
| 75 | + "execution_count": null, |
| 76 | + "metadata": {}, |
| 77 | + "outputs": [], |
| 78 | + "source": [] |
| 79 | + }, |
| 80 | + { |
| 81 | + "cell_type": "markdown", |
| 82 | + "metadata": {}, |
| 83 | + "source": [ |
| 84 | + "### 2.0 Data analysis" |
| 85 | + ] |
| 86 | + }, |
| 87 | + { |
| 88 | + "cell_type": "markdown", |
| 89 | + "metadata": {}, |
| 90 | + "source": [ |
| 91 | + "#### 2.1 Data exploration" |
| 92 | + ] |
| 93 | + }, |
| 94 | + { |
| 95 | + "cell_type": "code", |
| 96 | + "execution_count": null, |
| 97 | + "metadata": {}, |
| 98 | + "outputs": [], |
| 99 | + "source": [] |
| 100 | + }, |
| 101 | + { |
| 102 | + "cell_type": "code", |
| 103 | + "execution_count": null, |
| 104 | + "metadata": {}, |
| 105 | + "outputs": [], |
| 106 | + "source": [] |
| 107 | + }, |
| 108 | + { |
| 109 | + "cell_type": "markdown", |
| 110 | + "metadata": {}, |
| 111 | + "source": [ |
| 112 | + "#### 2.2 Data processing" |
| 113 | + ] |
| 114 | + }, |
| 115 | + { |
| 116 | + "cell_type": "markdown", |
| 117 | + "metadata": {}, |
| 118 | + "source": [] |
| 119 | + }, |
| 120 | + { |
| 121 | + "cell_type": "code", |
| 122 | + "execution_count": null, |
| 123 | + "metadata": {}, |
| 124 | + "outputs": [], |
| 125 | + "source": [] |
| 126 | + }, |
| 127 | + { |
| 128 | + "cell_type": "markdown", |
| 129 | + "metadata": {}, |
| 130 | + "source": [ |
| 131 | + "#### 2.3 Data visualization" |
| 132 | + ] |
| 133 | + }, |
| 134 | + { |
| 135 | + "cell_type": "markdown", |
| 136 | + "metadata": {}, |
| 137 | + "source": [] |
| 138 | + }, |
| 139 | + { |
| 140 | + "cell_type": "code", |
| 141 | + "execution_count": null, |
| 142 | + "metadata": {}, |
| 143 | + "outputs": [], |
| 144 | + "source": [] |
| 145 | + }, |
| 146 | + { |
| 147 | + "cell_type": "markdown", |
| 148 | + "metadata": {}, |
| 149 | + "source": [ |
| 150 | + "#### 2.4 Additional analysis" |
| 151 | + ] |
| 152 | + }, |
| 153 | + { |
| 154 | + "cell_type": "markdown", |
| 155 | + "metadata": {}, |
| 156 | + "source": [] |
| 157 | + }, |
| 158 | + { |
| 159 | + "cell_type": "code", |
| 160 | + "execution_count": null, |
| 161 | + "metadata": {}, |
| 162 | + "outputs": [], |
| 163 | + "source": [] |
| 164 | + }, |
| 165 | + { |
| 166 | + "cell_type": "markdown", |
| 167 | + "metadata": {}, |
| 168 | + "source": [ |
| 169 | + "### 3.0 Data Modelling" |
| 170 | + ] |
| 171 | + }, |
| 172 | + { |
| 173 | + "cell_type": "code", |
| 174 | + "execution_count": null, |
| 175 | + "metadata": {}, |
| 176 | + "outputs": [], |
| 177 | + "source": [] |
| 178 | + }, |
| 179 | + { |
| 180 | + "cell_type": "code", |
| 181 | + "execution_count": null, |
| 182 | + "metadata": {}, |
| 183 | + "outputs": [], |
| 184 | + "source": [] |
| 185 | + } |
| 186 | + ], |
| 187 | + "metadata": { |
| 188 | + "kernelspec": { |
| 189 | + "display_name": "githubcopilotworkshop", |
| 190 | + "language": "python", |
| 191 | + "name": "python3" |
| 192 | + }, |
| 193 | + "language_info": { |
| 194 | + "codemirror_mode": { |
| 195 | + "name": "ipython", |
| 196 | + "version": 3 |
| 197 | + }, |
| 198 | + "file_extension": ".py", |
| 199 | + "mimetype": "text/x-python", |
| 200 | + "name": "python", |
| 201 | + "nbconvert_exporter": "python", |
| 202 | + "pygments_lexer": "ipython3", |
| 203 | + "version": "3.10.14" |
| 204 | + } |
| 205 | + }, |
| 206 | + "nbformat": 4, |
| 207 | + "nbformat_minor": 2 |
| 208 | +} |
0 commit comments