-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathvideo_processing.py
174 lines (147 loc) · 8.83 KB
/
video_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# Copyright (c) 2021, InterDigital R&D France. All rights reserved.
#
# This source code is made available under the license found in the
# LICENSE.txt in the root directory of this source tree.
import argparse
import copy
import glob
import numpy as np
import os
import torch
import yaml
import time
from PIL import Image
from torchvision import transforms, utils, models
from utils.video_utils import *
from face_parsing.model import BiSeNet
from trainer import *
torch.backends.cudnn.enabled = True
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
torch.autograd.set_detect_anomaly(True)
Image.MAX_IMAGE_PIXELS = None
device = torch.device('cuda')
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='001', help='Path to the config file.')
parser.add_argument('--attr', type=str, default='Eyeglasses', help='attribute for manipulation.')
parser.add_argument('--alpha', type=str, default='1.', help='scale for manipulation.')
parser.add_argument('--label_file', type=str, default='./data/celebahq_anno.npy', help='label file path')
parser.add_argument('--pretrained_model_path', type=str, default='./pretrained_models/143_enc.pth', help='pretrained stylegan2 model')
parser.add_argument('--stylegan_model_path', type=str, default='./pixel2style2pixel/pretrained_models/psp_ffhq_encode.pt', help='pretrained stylegan2 model')
parser.add_argument('--arcface_model_path', type=str, default='./pretrained_models/backbone.pth', help='pretrained arcface model')
parser.add_argument('--parsing_model_path', type=str, default='./pretrained_models/79999_iter.pth', help='pretrained parsing model')
parser.add_argument('--log_path', type=str, default='./logs/', help='log file path')
parser.add_argument('--function', type=str, default='', help='Calling function by name.')
parser.add_argument('--video_path', type=str, default='./data/video/FP006911MD02.mp4', help='video file path')
parser.add_argument('--output_path', type=str, default='./output/video/', help='output video file path')
parser.add_argument('--boundary_path', type=str, default='./boundaries_ours/', help='output video file path')
parser.add_argument('--optical_flow', action='store_true', help='use optical flow')
parser.add_argument('--resize', action='store_true', help='downscale image size')
parser.add_argument('--seamless', action='store_true', help='seamless cloning')
parser.add_argument('--filter_size', type=float, default=3, help='filter size')
parser.add_argument('--strs', type=str, default='Original,Projected,Manipulated', help='strs to be added on video')
opts = parser.parse_args()
# Celeba attribute list
attr_dict = {'5_o_Clock_Shadow': 0, 'Arched_Eyebrows': 1, 'Attractive': 2, 'Bags_Under_Eyes': 3, \
'Bald': 4, 'Bangs': 5, 'Big_Lips': 6, 'Big_Nose': 7, 'Black_Hair': 8, 'Blond_Hair': 9, \
'Brown_Hair': 11, 'Bushy_Eyebrows': 12, 'Chubby': 13, 'Double_Chin': 14, \
'Eyeglasses': 15, 'Goatee': 16, 'Gray_Hair': 17, 'Heavy_Makeup': 18, 'High_Cheekbones': 19, \
'Male': 20, 'Mouth_Slightly_Open': 21, 'Mustache': 22, 'Narrow_Eyes': 23, 'No_Beard': 24, \
'Oval_Face': 25, 'Pale_Skin': 26, 'Pointy_Nose': 27, 'Receding_Hairline': 28, 'Rosy_Cheeks': 29, \
'Sideburns': 30, 'Smiling': 31, 'Straight_Hair': 32, 'Wavy_Hair': 33, 'Wearing_Earrings': 34, \
'Wearing_Hat': 35, 'Wearing_Lipstick': 36, 'Wearing_Necklace': 37, 'Wearing_Necktie': 38, 'Young': 39}
img_to_tensor = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# linear interpolation
def linear_interpolate(latent_code,
boundary,
start_distance=-3.0,
end_distance=3.0,
steps=10):
assert (latent_code.shape[0] == 1 and boundary.shape[0] == 1 and
len(boundary.shape) == 2 and
boundary.shape[1] == latent_code.shape[-1])
linspace = np.linspace(start_distance, end_distance, steps)
if len(latent_code.shape) == 2:
linspace = linspace.reshape(-1, 1).astype(np.float32)
return latent_code + linspace * boundary
if len(latent_code.shape) == 3:
linspace = linspace.reshape(-1, 1, 1).astype(np.float32)
return latent_code + linspace * boundary.reshape(1, 1, -1)
# Latent code manipulation
def latent_manipulation(opts, align_dir_path, process_dir_path):
os.makedirs(process_dir_path, exist_ok=True)
#attrs = opts.attr.split(',')
#alphas = opts.alpha.split(',')
step_scale = 15 * int(opts.alpha)
n_steps = 5
boundary = np.load(opts.boundary_path +'%s_boundary.npy'%opts.attr)
# Initialize trainer
config = yaml.load(open('./configs/' + opts.config + '.yaml', 'r'), Loader=yaml.FullLoader)
trainer = Trainer(config, opts)
trainer.initialize(opts.stylegan_model_path, opts.arcface_model_path, opts.parsing_model_path)
trainer.to(device)
state_dict = torch.load(opts.pretrained_model_path)#os.path.join(opts.log_path, opts.config + '/checkpoint.pth'))
trainer.enc.load_state_dict(torch.load(opts.pretrained_model_path))
trainer.enc.eval()
with torch.no_grad():
img_list = [glob.glob1(align_dir_path, ext) for ext in ['*jpg','*png']]
img_list = [item for sublist in img_list for item in sublist]
img_list.sort()
n_1 = trainer.StyleGAN.make_noise()
for i, img_name in enumerate(img_list):
#print(i, img_name)
image_A = img_to_tensor(Image.open(align_dir_path + img_name)).unsqueeze(0).to(device)
w_0, f_0 = trainer.encode(image_A)
w_0_np = w_0.cpu().numpy().reshape(1, -1)
out = linear_interpolate(w_0_np, boundary, start_distance=-step_scale, end_distance=step_scale, steps=n_steps)
w_1 = torch.tensor(out[-1]).view(1, -1, 512).to(device)
_, fea_0 = trainer.StyleGAN([w_0], noise=n_1, input_is_latent=True, return_features=True)
_, fea_1 = trainer.StyleGAN([w_1], noise=n_1, input_is_latent=True, return_features=True)
features = [None]*5 + [f_0 + fea_1[5] - fea_0[5]] + [None]*(17-5)
x_1, _ = trainer.StyleGAN([w_1], noise=n_1, input_is_latent=True, features_in=features, feature_scale=1.0)
utils.save_image(clip_img(x_1), process_dir_path + 'frame%04d'%i+'.jpg')
video_path = opts.video_path
video_name = video_path.split('/')[-1]
orig_dir_path = opts.output_path + video_name.split('.')[0] + '/' + video_name.split('.')[0] + '/'
align_dir_path = os.path.dirname(orig_dir_path) + '_crop_align/'
mask_dir_path = os.path.dirname(orig_dir_path) + '_crop_align_mask/'
latent_dir_path = os.path.dirname(orig_dir_path) + '_crop_align_latent/'
process_dir_path = os.path.dirname(orig_dir_path) + '_crop_align_' + opts.attr.replace(',','_') + '/'
reproject_dir_path = os.path.dirname(orig_dir_path) + '_crop_align_' + opts.attr.replace(',','_') + '_reproject/'
print(opts.function)
start_time = time.perf_counter()
if opts.function == 'video_to_frames':
video_to_frames(video_path, orig_dir_path, count_num=120, resize=opts.resize)
create_video(orig_dir_path)
elif opts.function == 'align_frames':
align_frames(orig_dir_path, align_dir_path, output_size=1024, optical_flow=opts.optical_flow, filter_size=opts.filter_size)
# parsing mask
parsing_net = BiSeNet(n_classes=19)
parsing_net.load_state_dict(torch.load(opts.parsing_model_path))
parsing_net.eval()
parsing_net.to(device)
generate_mask(align_dir_path, mask_dir_path, parsing_net)
elif opts.function == 'latent_manipulation':
latent_manipulation(opts, align_dir_path, process_dir_path)
elif opts.function == 'reproject_origin':
process_dir_path = os.path.dirname(orig_dir_path) + '_inversion/'
reproject_dir_path = os.path.dirname(orig_dir_path) + '_inversion_reproject/'
video_reproject(orig_dir_path, process_dir_path, reproject_dir_path, align_dir_path, mask_dir_path, seamless=opts.seamless)
create_video(reproject_dir_path)
elif opts.function == 'reproject_manipulate':
video_reproject(orig_dir_path, process_dir_path, reproject_dir_path, align_dir_path, mask_dir_path, seamless=opts.seamless)
create_video(reproject_dir_path)
elif opts.function == 'compare_frames':
process_dir_paths = []
process_dir_paths.append(os.path.dirname(orig_dir_path) + '_inversion_reproject/')
if len(opts.attr.split(','))>0:
process_dir_paths.append(reproject_dir_path)
save_dir = os.path.dirname(orig_dir_path) + '_crop_align_' + opts.attr.replace(',','_') + '_compare/'
compare_frames(save_dir, orig_dir_path, process_dir_paths, strs=opts.strs, dim=1)
create_video(save_dir, video_format='.avi', resize_ratio=1)
count_time = time.perf_counter() - start_time
print("Elapsed time: %0.4f seconds"%count_time)