-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrainer.py
321 lines (277 loc) · 15.4 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import sys
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
from PIL import Image
from torch.autograd import grad
from torchvision import transforms, utils
import face_alignment
import lpips
sys.path.append('pixel2style2pixel/')
from pixel2style2pixel.models.stylegan2.model import Generator, get_keys
from nets.feature_style_encoder import *
from utils.functions import *
from arcface.iresnet import *
from face_parsing.model import BiSeNet
from ranger import Ranger
class Trainer(nn.Module):
def __init__(self, config, opts):
super(Trainer, self).__init__()
# Load Hyperparameters
self.config = config
self.device = torch.device(self.config['device'])
self.scale = int(np.log2(config['resolution']/config['enc_resolution']))
self.scale_mode = 'bilinear'
self.opts = opts
self.n_styles = 2 * int(np.log2(config['resolution'])) - 2
self.idx_k = 5
if 'idx_k' in self.config:
self.idx_k = self.config['idx_k']
if 'stylegan_version' in self.config and self.config['stylegan_version'] == 3:
self.n_styles = 16
# Networks
in_channels = 256
if 'in_c' in self.config:
in_channels = config['in_c']
enc_residual = False
if 'enc_residual' in self.config:
enc_residual = self.config['enc_residual']
enc_residual_coeff = False
if 'enc_residual_coeff' in self.config:
enc_residual_coeff = self.config['enc_residual_coeff']
resnet_layers = [4,5,6]
if 'enc_start_layer' in self.config:
st_l = self.config['enc_start_layer']
resnet_layers = [st_l, st_l+1, st_l+2]
if 'scale_mode' in self.config:
self.scale_mode = self.config['scale_mode']
# Load encoder
self.stride = (self.config['fs_stride'], self.config['fs_stride'])
self.enc = fs_encoder_v2(n_styles=self.n_styles, opts=opts, residual=enc_residual, use_coeff=enc_residual_coeff, resnet_layer=resnet_layers, stride=self.stride)
##########################
# Other nets
self.StyleGAN = self.init_stylegan(config)
self.Arcface = iresnet50()
self.parsing_net = BiSeNet(n_classes=19)
# Optimizers
# Latent encoder
self.enc_params = list(self.enc.parameters())
if 'freeze_iresnet' in self.config and self.config['freeze_iresnet']:
self.enc_params = list(self.enc.styles.parameters())
if 'optimizer' in self.config and self.config['optimizer'] == 'ranger':
self.enc_opt = Ranger(self.enc_params, lr=config['lr'], betas=(config['beta_1'], config['beta_2']), weight_decay=config['weight_decay'])
else:
self.enc_opt = torch.optim.Adam(self.enc_params, lr=config['lr'], betas=(config['beta_1'], config['beta_2']), weight_decay=config['weight_decay'])
self.enc_scheduler = torch.optim.lr_scheduler.StepLR(self.enc_opt, step_size=config['step_size'], gamma=config['gamma'])
self.fea_avg = None
def initialize(self, stylegan_model_path, arcface_model_path, parsing_model_path):
# load StyleGAN model
stylegan_state_dict = torch.load(stylegan_model_path, map_location='cpu')
self.StyleGAN.load_state_dict(get_keys(stylegan_state_dict, 'decoder'), strict=True)
self.StyleGAN.to(self.device)
# get StyleGAN average latent in w space and the noise inputs
self.dlatent_avg = stylegan_state_dict['latent_avg'].to(self.device)
self.noise_inputs = [getattr(self.StyleGAN.noises, f'noise_{i}').to(self.device) for i in range(self.StyleGAN.num_layers)]
# load Arcface weight
self.Arcface.load_state_dict(torch.load(self.opts.arcface_model_path))
self.Arcface.eval()
# load face parsing net weight
self.parsing_net.load_state_dict(torch.load(self.opts.parsing_model_path))
self.parsing_net.eval()
# load lpips net weight
self.loss_fn = lpips.LPIPS(net='alex', spatial=False)
self.loss_fn.to(self.device)
def init_stylegan(self, config):
"""StyleGAN = G_main(
truncation_psi=config['truncation_psi'],
resolution=config['resolution'],
use_noise=config['use_noise'],
randomize_noise=config['randomize_noise']
)"""
StyleGAN = Generator(1024, 512, 8)
return StyleGAN
def mapping(self, z):
return self.StyleGAN.get_latent(z).detach()
def L1loss(self, input, target):
return nn.L1Loss()(input,target)
def L2loss(self, input, target):
return nn.MSELoss()(input,target)
def CEloss(self, x, target_age):
return nn.CrossEntropyLoss()(x, target_age)
def LPIPS(self, input, target, multi_scale=False):
if multi_scale:
out = 0
for k in range(3):
out += self.loss_fn.forward(downscale(input, k, self.scale_mode), downscale(target, k, self.scale_mode)).mean()
else:
out = self.loss_fn.forward(downscale(input, self.scale, self.scale_mode), downscale(target, self.scale, self.scale_mode)).mean()
return out
def IDloss(self, input, target):
x_1 = F.interpolate(input, (112,112))
x_2 = F.interpolate(target, (112,112))
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
if 'multi_layer_idloss' in self.config and self.config['multi_layer_idloss']:
id_1 = self.Arcface(x_1, return_features=True)
id_2 = self.Arcface(x_2, return_features=True)
return sum([1 - cos(id_1[i].flatten(start_dim=1), id_2[i].flatten(start_dim=1)) for i in range(len(id_1))])
else:
id_1 = self.Arcface(x_1)
id_2 = self.Arcface(x_2)
return 1 - cos(id_1, id_2)
def landmarkloss(self, input, target):
cos = nn.CosineSimilarity(dim=1, eps=1e-6)
x_1 = stylegan_to_classifier(input, out_size=(512, 512))
x_2 = stylegan_to_classifier(target, out_size=(512,512))
out_1 = self.parsing_net(x_1)
out_2 = self.parsing_net(x_2)
parsing_loss = sum([1 - cos(out_1[i].flatten(start_dim=1), out_2[i].flatten(start_dim=1)) for i in range(len(out_1))])
return parsing_loss.mean()
def feature_match(self, enc_feat, dec_feat, layer_idx=None):
loss = []
if layer_idx is None:
layer_idx = [i for i in range(len(enc_feat))]
for i in layer_idx:
loss.append(self.L1loss(enc_feat[i], dec_feat[i]))
return loss
def encode(self, img):
w_recon, fea = self.enc(downscale(img, self.scale, self.scale_mode))
w_recon = w_recon + self.dlatent_avg
return w_recon, fea
def get_image(self, w=None, img=None, noise=None, zero_noise_input=True, training_mode=True):
x_1, n_1 = img, noise
if x_1 is None:
x_1, _ = self.StyleGAN([w], input_is_latent=True, noise = n_1)
w_delta = None
fea = None
features = None
return_features = False
# Reconstruction
k = 0
if 'use_fs_encoder' in self.config and self.config['use_fs_encoder']:
return_features = True
k = self.idx_k
w_recon, fea = self.enc(downscale(x_1, self.scale, self.scale_mode))
w_recon = w_recon + self.dlatent_avg
features = [None]*k + [fea] + [None]*(17-k)
else:
w_recon = self.enc(downscale(x_1, self.scale, self.scale_mode)) + self.dlatent_avg
# generate image
x_1_recon, fea_recon = self.StyleGAN([w_recon], input_is_latent=True, return_features=True, features_in=features, feature_scale=min(1.0, 0.0001*self.n_iter))
fea_recon = fea_recon[k].detach()
return [x_1_recon, x_1[:,:3,:,:], w_recon, w_delta, n_1, fea, fea_recon]
def compute_loss(self, w=None, img=None, noise=None, real_img=None):
return self.compute_loss_stylegan2(w=w, img=img, noise=noise, real_img=real_img)
def compute_loss_stylegan2(self, w=None, img=None, noise=None, real_img=None):
if img is None:
# generate synthetic images
if noise is None:
noise = [torch.randn(w.size()[:1] + ee.size()[1:]).to(self.device) for ee in self.noise_inputs]
img, _ = self.StyleGAN([w], input_is_latent=True, noise = noise)
img = img.detach()
if img is not None and real_img is not None:
# concat synthetic and real data
img = torch.cat([img, real_img], dim=0)
noise = [torch.cat([ee, ee], dim=0) for ee in noise]
out = self.get_image(w=w, img=img, noise=noise)
x_1_recon, x_1, w_recon, w_delta, n_1, fea_1, fea_recon = out
# Loss setting
w_l2, w_lpips, w_id = self.config['w']['l2'], self.config['w']['lpips'], self.config['w']['id']
b = x_1.size(0)//2
if 'l2loss_on_real_image' in self.config and self.config['l2loss_on_real_image']:
b = x_1.size(0)
self.l2_loss = self.L2loss(x_1_recon[:b], x_1[:b]) if w_l2 > 0 else torch.tensor(0) # l2 loss only on synthetic data
# LPIPS
multiscale_lpips=False if 'multiscale_lpips' not in self.config else self.config['multiscale_lpips']
self.lpips_loss = self.LPIPS(x_1_recon, x_1, multi_scale=multiscale_lpips).mean() if w_lpips > 0 else torch.tensor(0)
self.id_loss = self.IDloss(x_1_recon, x_1).mean() if w_id > 0 else torch.tensor(0)
self.landmark_loss = self.landmarkloss(x_1_recon, x_1) if self.config['w']['landmark'] > 0 else torch.tensor(0)
if 'use_fs_encoder' in self.config and self.config['use_fs_encoder']:
k = self.idx_k
features = [None]*k + [fea_1] + [None]*(17-k)
x_1_recon_2, _ = self.StyleGAN([w_recon], noise=n_1, input_is_latent=True, features_in=features, feature_scale=min(1.0, 0.0001*self.n_iter))
self.lpips_loss += self.LPIPS(x_1_recon_2, x_1, multi_scale=multiscale_lpips).mean() if w_lpips > 0 else torch.tensor(0)
self.id_loss += self.IDloss(x_1_recon_2, x_1).mean() if w_id > 0 else torch.tensor(0)
self.landmark_loss += self.landmarkloss(x_1_recon_2, x_1) if self.config['w']['landmark'] > 0 else torch.tensor(0)
# downscale image
x_1 = downscale(x_1, self.scale, self.scale_mode)
x_1_recon = downscale(x_1_recon, self.scale, self.scale_mode)
# Total loss
w_l2, w_lpips, w_id = self.config['w']['l2'], self.config['w']['lpips'], self.config['w']['id']
self.loss = w_l2*self.l2_loss + w_lpips*self.lpips_loss + w_id*self.id_loss
if 'f_recon' in self.config['w']:
self.feature_recon_loss = self.L2loss(fea_1, fea_recon)
self.loss += self.config['w']['f_recon']*self.feature_recon_loss
if 'l1' in self.config['w'] and self.config['w']['l1']>0:
self.l1_loss = self.L1loss(x_1_recon, x_1)
self.loss += self.config['w']['l1']*self.l1_loss
if 'landmark' in self.config['w']:
self.loss += self.config['w']['landmark']*self.landmark_loss
return self.loss
def test(self, w=None, img=None, noise=None, zero_noise_input=True, return_latent=False, training_mode=False):
if 'n_iter' not in self.__dict__.keys():
self.n_iter = 1e5
out = self.get_image(w=w, img=img, noise=noise, training_mode=training_mode)
x_1_recon, x_1, w_recon, w_delta, n_1, fea_1 = out[:6]
output = [x_1, x_1_recon]
if return_latent:
output += [w_recon, fea_1]
return output
def log_loss(self, logger, n_iter, prefix='train'):
logger.log_value(prefix + '/l2_loss', self.l2_loss.item(), n_iter + 1)
logger.log_value(prefix + '/lpips_loss', self.lpips_loss.item(), n_iter + 1)
logger.log_value(prefix + '/id_loss', self.id_loss.item(), n_iter + 1)
logger.log_value(prefix + '/total_loss', self.loss.item(), n_iter + 1)
if 'f_recon' in self.config['w']:
logger.log_value(prefix + '/feature_recon_loss', self.feature_recon_loss.item(), n_iter + 1)
if 'l1' in self.config['w'] and self.config['w']['l1']>0:
logger.log_value(prefix + '/l1_loss', self.l1_loss.item(), n_iter + 1)
if 'landmark' in self.config['w']:
logger.log_value(prefix + '/landmark_loss', self.landmark_loss.item(), n_iter + 1)
def save_image(self, log_dir, n_epoch, n_iter, prefix='/train/', w=None, img=None, noise=None, training_mode=True):
return self.save_image_stylegan2(log_dir=log_dir, n_epoch=n_epoch, n_iter=n_iter, prefix=prefix, w=w, img=img, noise=noise, training_mode=training_mode)
def save_image_stylegan2(self, log_dir, n_epoch, n_iter, prefix='/train/', w=None, img=None, noise=None, training_mode=True):
os.makedirs(log_dir + prefix, exist_ok=True)
with torch.no_grad():
out = self.get_image(w=w, img=img, noise=noise, training_mode=training_mode)
x_1_recon, x_1, w_recon, w_delta, n_1, fea_1 = out[:6]
x_1 = downscale(x_1, self.scale, self.scale_mode)
x_1_recon = downscale(x_1_recon, self.scale, self.scale_mode)
out_img = torch.cat((x_1, x_1_recon), dim=3)
#fs
if 'use_fs_encoder' in self.config and self.config['use_fs_encoder']:
k = self.idx_k
features = [None]*k + [fea_1] + [None]*(17-k)
x_1_recon_2, _ = self.StyleGAN([w_recon], noise=n_1, input_is_latent=True, features_in=features, feature_scale=min(1.0, 0.0001*self.n_iter))
x_1_recon_2 = downscale(x_1_recon_2, self.scale, self.scale_mode)
out_img = torch.cat((x_1, x_1_recon, x_1_recon_2), dim=3)
utils.save_image(clip_img(out_img[:1]), log_dir + prefix + 'epoch_' +str(n_epoch+1) + '_iter_' + str(n_iter+1) + '_0.jpg')
if out_img.size(0)>1:
utils.save_image(clip_img(out_img[1:]), log_dir + prefix + 'epoch_' +str(n_epoch+1) + '_iter_' + str(n_iter+1) + '_1.jpg')
def save_model(self, log_dir):
torch.save(self.enc.state_dict(),'{:s}/enc.pth.tar'.format(log_dir))
def save_checkpoint(self, n_epoch, log_dir):
checkpoint_state = {
'n_epoch': n_epoch,
'enc_state_dict': self.enc.state_dict(),
'enc_opt_state_dict': self.enc_opt.state_dict(),
'enc_scheduler_state_dict': self.enc_scheduler.state_dict()
}
torch.save(checkpoint_state, '{:s}/checkpoint.pth'.format(log_dir))
if (n_epoch+1)%10 == 0 :
torch.save(checkpoint_state, '{:s}/checkpoint'.format(log_dir)+'_'+str(n_epoch+1)+'.pth')
def load_model(self, log_dir):
self.enc.load_state_dict(torch.load('{:s}/enc.pth.tar'.format(log_dir)))
def load_checkpoint(self, checkpoint_path):
state_dict = torch.load(checkpoint_path)
self.enc.load_state_dict(state_dict['enc_state_dict'])
self.enc_opt.load_state_dict(state_dict['enc_opt_state_dict'])
self.enc_scheduler.load_state_dict(state_dict['enc_scheduler_state_dict'])
return state_dict['n_epoch'] + 1
def update(self, w=None, img=None, noise=None, real_img=None, n_iter=0):
self.n_iter = n_iter
self.enc_opt.zero_grad()
self.compute_loss(w=w, img=img, noise=noise, real_img=real_img).backward()
self.enc_opt.step()