-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtrain.py
149 lines (121 loc) · 5.9 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import argparse
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import yaml
from PIL import Image
from tqdm import tqdm
from torchvision import transforms, utils
from tensorboard_logger import Logger
from utils.datasets import *
from utils.functions import *
from trainer import *
torch.backends.cudnn.enabled = True
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
torch.autograd.set_detect_anomaly(True)
Image.MAX_IMAGE_PIXELS = None
device = torch.device('cuda')
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='001', help='Path to the config file.')
parser.add_argument('--real_dataset_path', type=str, default='./data/ffhq-dataset/images/', help='dataset path')
parser.add_argument('--dataset_path', type=str, default='./data/stylegan2-generate-images/ims/', help='dataset path')
parser.add_argument('--label_path', type=str, default='./data/stylegan2-generate-images/seeds_pytorch_1.8.1.npy', help='laebl path')
parser.add_argument('--stylegan_model_path', type=str, default='./pixel2style2pixel/pretrained_models/psp_ffhq_encode.pt', help='pretrained stylegan2 model')
parser.add_argument('--arcface_model_path', type=str, default='./pretrained_models/backbone.pth', help='pretrained arcface model')
parser.add_argument('--parsing_model_path', type=str, default='./pretrained_models/79999_iter.pth', help='pretrained parsing model')
parser.add_argument('--log_path', type=str, default='./logs/', help='log file path')
parser.add_argument('--resume', action='store_true', help='resume from checkpoint')
parser.add_argument('--checkpoint', type=str, default='', help='checkpoint file path')
opts = parser.parse_args()
log_dir = os.path.join(opts.log_path, opts.config) + '/'
os.makedirs(log_dir, exist_ok=True)
logger = Logger(log_dir)
config = yaml.load(open('./configs/' + opts.config + '.yaml', 'r'), Loader=yaml.FullLoader)
batch_size = config['batch_size']
epochs = config['epochs']
iter_per_epoch = config['iter_per_epoch']
img_size = (config['resolution'], config['resolution'])
video_data_input = False
img_to_tensor = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
img_to_tensor_car = transforms.Compose([
transforms.Resize((384, 512)),
transforms.Pad(padding=(0, 64, 0, 64)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# Initialize trainer
trainer = Trainer(config, opts)
trainer.initialize(opts.stylegan_model_path, opts.arcface_model_path, opts.parsing_model_path)
trainer.to(device)
noise_exemple = trainer.noise_inputs
train_data_split = 0.9 if 'train_split' not in config else config['train_split']
# Load synthetic dataset
dataset_A = MyDataSet(image_dir=opts.dataset_path, label_dir=opts.label_path, output_size=img_size, noise_in=noise_exemple, training_set=True, train_split=train_data_split)
loader_A = data.DataLoader(dataset_A, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True)
# Load real dataset
dataset_B = MyDataSet(image_dir=opts.real_dataset_path, label_dir=None, output_size=img_size, noise_in=noise_exemple, training_set=True, train_split=train_data_split)
loader_B = data.DataLoader(dataset_B, batch_size=batch_size, shuffle=True, num_workers=2, pin_memory=True)
# Start Training
epoch_0 = 0
# check if checkpoint exist
if 'checkpoint.pth' in os.listdir(log_dir):
epoch_0 = trainer.load_checkpoint(os.path.join(log_dir, 'checkpoint.pth'))
if opts.resume:
epoch_0 = trainer.load_checkpoint(os.path.join(opts.log_path, opts.checkpoint))
torch.manual_seed(0)
os.makedirs(log_dir + 'validation/', exist_ok=True)
print("Start!")
for n_epoch in tqdm(range(epoch_0, epochs)):
iter_A = iter(loader_A)
iter_B = iter(loader_B)
iter_0 = n_epoch*iter_per_epoch
trainer.enc_opt.zero_grad()
for n_iter in range(iter_0, iter_0 + iter_per_epoch):
if opts.dataset_path is None:
z, noise = next(iter_A)
img_A = None
else:
z, img_A, noise = next(iter_A)
img_A = img_A.to(device)
z = z.to(device)
noise = [ee.to(device) for ee in noise]
w = trainer.mapping(z)
if 'fixed_noise' in config and config['fixed_noise']:
img_A, noise = None, None
img_B = None
if 'use_realimg' in config and config['use_realimg']:
try:
img_B = next(iter_B)
if img_B.size(0) != batch_size:
iter_B = iter(loader_B)
img_B = next(iter_B)
except StopIteration:
iter_B = iter(loader_B)
img_B = next(iter_B)
img_B = img_B.to(device)
trainer.update(w=w, img=img_A, noise=noise, real_img=img_B, n_iter=n_iter)
if (n_iter+1) % config['log_iter'] == 0:
trainer.log_loss(logger, n_iter, prefix='train')
if (n_iter+1) % config['image_save_iter'] == 0:
trainer.save_image(log_dir, n_epoch, n_iter, prefix='/train/', w=w, img=img_A, noise=noise)
trainer.save_image(log_dir, n_epoch, n_iter+1, prefix='/train/', w=w, img=img_B, noise=noise, training_mode=False)
trainer.enc_scheduler.step()
trainer.save_checkpoint(n_epoch, log_dir)
# Test the model on celeba hq dataset
with torch.no_grad():
trainer.enc.eval()
for i in range(10):
image_A = img_to_tensor(Image.open('./data/celeba_hq/%d.jpg' % i)).unsqueeze(0).to(device)
output = trainer.test(img=image_A)
out_img = torch.cat(output, 3)
utils.save_image(clip_img(out_img[:1]), log_dir + 'validation/' + 'epoch_' +str(n_epoch+1) + '_' + str(i) + '.jpg')
trainer.compute_loss(w=w, img=img_A, noise=noise, real_img=img_B)
trainer.log_loss(logger, n_iter, prefix='validation')
trainer.save_model(log_dir)