-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathtest.py
78 lines (67 loc) · 3.28 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import argparse
import glob
import os
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.utils.data as data
import yaml
from PIL import Image
from tqdm import tqdm
from torchvision import transforms, utils
from utils.datasets import *
from utils.functions import *
from trainer import *
torch.backends.cudnn.enabled = True
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = True
torch.autograd.set_detect_anomaly(True)
Image.MAX_IMAGE_PIXELS = None
device = torch.device('cuda')
parser = argparse.ArgumentParser()
parser.add_argument('--config', type=str, default='001', help='Path to the config file.')
parser.add_argument('--pretrained_model_path', type=str, default='./pretrained_models/143_enc.pth', help='pretrained stylegan2 model')
parser.add_argument('--stylegan_model_path', type=str, default='./pixel2style2pixel/pretrained_models/psp_ffhq_encode.pt', help='pretrained stylegan2 model')
parser.add_argument('--arcface_model_path', type=str, default='./pretrained_models/backbone.pth', help='pretrained arcface model')
parser.add_argument('--parsing_model_path', type=str, default='./pretrained_models/79999_iter.pth', help='pretrained parsing model')
parser.add_argument('--log_path', type=str, default='./logs/', help='log file path')
parser.add_argument('--resume', action='store_true', help='resume from checkpoint')
parser.add_argument('--checkpoint', type=str, default='', help='checkpoint file path')
parser.add_argument('--checkpoint_noiser', type=str, default='', help='checkpoint file path')
parser.add_argument('--multigpu', type=bool, default=False, help='use multiple gpus')
parser.add_argument('--input_path', type=str, default='./test/', help='evaluation data file path')
parser.add_argument('--save_path', type=str, default='./output/image/', help='output data save path')
opts = parser.parse_args()
log_dir = os.path.join(opts.log_path, opts.config) + '/'
config = yaml.load(open('./configs/' + opts.config + '.yaml', 'r'), Loader=yaml.FullLoader)
# Initialize trainer
trainer = Trainer(config, opts)
trainer.initialize(opts.stylegan_model_path, opts.arcface_model_path, opts.parsing_model_path)
trainer.to(device)
state_dict = torch.load(opts.pretrained_model_path)#os.path.join(opts.log_path, opts.config + '/checkpoint.pth'))
trainer.enc.load_state_dict(torch.load(opts.pretrained_model_path))
trainer.enc.eval()
img_to_tensor = transforms.Compose([
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# simple inference
image_dir = opts.input_path
save_dir = opts.save_path
os.makedirs(save_dir, exist_ok=True)
with torch.no_grad():
img_list = [glob.glob1(image_dir, ext) for ext in ['*jpg','*png']]
img_list = [item for sublist in img_list for item in sublist]
img_list.sort()
for i, img_name in enumerate(img_list):
#print(i, img_name)
image_A = img_to_tensor(Image.open(image_dir + img_name)).unsqueeze(0).to(device)
output = trainer.test(img=image_A, return_latent=True)
feature = output.pop()
latent = output.pop()
#np.save(save_dir + 'latent_code_%d.npy'%i, latent.cpu().numpy())
utils.save_image(clip_img(output[1]), save_dir + img_name)
if i > 1000:
break