-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path.Rhistory
512 lines (512 loc) · 22.3 KB
/
.Rhistory
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
}
else{
pca = plotPCA(normObject, intgroup = c(input$variable))
}
# plot
output$pca = renderPlot({pca})
# pca interactive brush info
output$pca_info = renderPrint({
brushedPoints(pca[["data"]], input$pca_brush)
})
#### VOLCANO PLOT ####
observeEvent(input$volcPlot, {
# in case user specified a different normalization method, display message that results table and volcano plots are still based on DESeq standard:
if(input$normMethod != "Size Factor Division"){
showNotification("NOTE: Volcano plot is based on Size Factor Divison.")
}
fc_bound = input$volcFcThr
# transform results data
res = na.omit(as.data.frame(ddsRes))
# significance
res$Expression = "NS" # create new column "significance", initially all genes = NS
res[res$log2FoldChange >= fc_bound & res$padj < input$alpha,]$Expression = "UP" # UP if padj > alpha & logFC >= fc threshold
res[res$log2FoldChange <= -fc_bound & res$padj < input$alpha,]$Expression = "DOWN" # DOWN if padj > alpha & logFC <= - fc threshold
# new column with -log10(padj) - interactive shiny CAN'T handle if you change parameters in aes() of ggplot and behaves weird
res$neglog10_p_value = -log10(res$padj)
# plot:
vp = ggplot(res, aes(x = log2FoldChange, y = neglog10_p_value, color = Expression, tooltip = padj))
output$volc = renderPlot({
vp +
# scatter:
geom_point() +
# lines (alpha and logFC):
geom_hline(yintercept = (log10(input$alpha)/log10(10))*(-1), color = "darkgrey") + # horizontal for alpha
geom_vline(xintercept = c(fc_bound, -fc_bound), color = "darkgrey") + # vertical for fc and -fc
# color:
scale_color_manual(values = c("red", "black", "blue")) +
# x-axis ticks:
scale_x_continuous(breaks = c(round(min(res$log2FoldChange))):round(max(res$log2FoldChange))) # integers from rounded minimum to maximum of the log2FC
}) # render volcano plot close
# volcano plot interactive brush info
output$volc_info = renderPrint({
brushedPoints(res, input$volc_brush)
})
}) # volcano plot button close
#### HEATMAP OF EXPERIMENTS ####
log2normCounts = normCounts
# if data was normalized by size factor division => data is not yet log transformed!
if(input$normMethod == "Size Factor Division"){
# log2normCounts = log2(log2normCounts) # log of size factor counts, this produces -inf counts were counts were filtered (set to 0) by DESeq
# log2normCounts[log2normCounts == -Inf] = NA # set these values to NA
# log2normCounts = na.omit(log2normCounts) # omit NA rows
log2normCounts = logTransform(normCounts)
}
# calculate distance
samp_dist = dist(t(log2normCounts))
# render plot
plotExpr = pheatmap(as.matrix(samp_dist))
output$heatExp = renderPlot({plotExpr})
#### HEATMAP OF TOP GENES (BASED ON VARIANCE) ####
observeEvent(input$plotGeneHeat, {
# Selection of genes:
numberOfGenes = input$geneHeatNo # number of genes the user wants to display
highVarIndex = head(order(rowVars(log2normCounts), decreasing = TRUE), numberOfGenes) # indexes of the [numberOfGenes] with highest variance
topVarGenes = log2normCounts[highVarIndex, ] # subset log2 transformed dataset accordingly
topVarGenes = topVarGenes - rowMeans(topVarGenes) # mean centering to acquire (log2-)deviation from the mean
# column annotation:
colAnno = data.frame(colData(dds)[, c(input$variable)]) # annotation is based on the experimental variables the user chose before pressing the analyze button!
row.names(colAnno) = row.names(colData(dds)) # if only one variable is selected, R omits the rownames meaning the need to be re-specified!
colnames(colAnno) = input$variable # format column name
plotGenes = pheatmap(topVarGenes, annotation_col = colAnno)
# plot heatmap:
output$heatGene = renderPlot({plotGenes}, height = input$geneHeatHeight)
}) # gene Heatmap button close
#### BOXPLOTS ####
output$boxplot = renderPlot(boxplot(log2normCounts))
}) # analyze button close
}) # upload button close
}) # server close
#### ======== START APP ======== ####
shinyApp(ui, server)
# load
library(DESeq2)
library(ggplot2)
library(pheatmap)
library(shiny)
library(shinythemes)
library(rtracklayer)
library(preprocessCore)
sortThatData = function(rawCounts, infoData, gffData){
# Purpose of this function is to sort the info data
# and set the column names of the raw data so they
# match with the info data (e.g. remove .bam ending)
vec = numeric(0) #Character vector containing the correct order of column names. Will be used to sort info data
for(i in 1:ncol(rawCounts)){ # outer loop sets column of raw data...
checkCol = colnames(rawCounts)[i]
for(j in 1:nrow(infoData)){ # ...which will be compared with nested loop using grepl
if(grepl(infoData[j, 1], checkCol)){ # QBiC Code must be the first column of the info data for this to work
vec[i] = j # vec will contain the correct order the info data must be sorted with
colnames(rawCounts)[i] = infoData[j, 1] # replace column names with their correpsonding QBiC Code
}
}
}
row.names(infoData) = infoData[,1] # set row names of info data to QBiC Code so it can be sorted by column names of count data
# row.names(rawCounts) = rawCounts[, 1] # set row names of raw data to gene ID
rawCounts = rawCounts[,-(2:7)] # remove columns 2 to 6
infoData = infoData[colnames(rawCounts)[-1],] # sort accordingly
# Change row names of raw counts to corrsponding gene name:
names = gffData[gffData$locus_tag %in% rawCounts$Geneid & gffData$gbkey == "Gene",]$Name # Match locus_tag of gff with Geneid and get gene names
row.names(rawCounts) = make.names(names, unique = TRUE) # Problem: Same gene name for > 1 locus tag => will be annotated like this: name, name.1, name.2 ...
return(list(rawCounts, infoData))
}
# Method to logtransform AND remove rows containing -Inf values
logTransform = function(dataset){
log2normCounts = log2(dataset) # log of size factor counts, this produces -inf counts were counts were filtered (set to 0) by DESeq
log2normCounts[log2normCounts == -Inf] = NA # set these values to NA
log2normCounts = na.omit(log2normCounts) # omit NA rows
return(log2normCounts)
}
#### =========== UI ============ ####
ui = fluidPage(
theme = shinytheme("slate"),
navbarPage("DESeq2 Analysis",
### First tab for uploading and displaying count data, design data, specifying DESeq Parameters ###
tabPanel("Data Upload & Analysis Parameters",
## sidebar (upload request, DESeq specifications) ##
sidebarPanel(
## Data Upload ##
h4("Data Upload"),
div(style = "margin-top: +10px"), # reduce/increase space
# file browsers for raw data and info data
fileInput("countFile", "Upload count data (.txt)", accept = ".txt"),
div(style = "margin-top: -20px"),
fileInput("infoFile", "Upload design data (.tsv)", accept = ".tsv"),
div(style = "margin-top: -15px"),
fileInput("gffFile", "Upload General feature format (.gff)", accept = ".gff"),
div(style = "margin-top: -15px"),
# Upload button
actionButton("upload", "Upload!", width = '100%',class = "btn-warning"),
## DESeq Design ##
div(style = "margin-top: +45px"),
h4("Experimental Design"),
# Dropdown menu to specify design variable for DESeq Analysis
selectInput("variable", "Experimental Variable:", "-"),
# Radio buttons to specify normalization method
radioButtons("normMethod",
"Normalization Method:",
c("Size Factor Division", "VST", "Quantile Normalization")),
# Slider to selecet significance level
sliderInput("alpha",
"Significance Level:",
min = 0.01,
max = 1,
step = 0.01,
value = 0.05),
# Button to start analysis
actionButton("analyze", "Analyze!", width = '100%',class = "btn-warning")
), # side bar close
## Main panel displaying data, results, plots ##
mainPanel(tabsetPanel(type = "tabs",
# Raw data and info table
tabPanel("Raw counts", tableOutput("countTable")),
tabPanel("Design", tableOutput("designTable")),
# Normalized data and results
tabPanel("Normalized Counts", tableOutput("normalizedTable")),
tabPanel("Results", textOutput("resText"), tableOutput("resTable"))
)
) # main panel close
), # tabPanel close
tabPanel("Plots",
tabsetPanel(type = "tabs",
# BOXPLOTS
tabPanel("Boxplots", plotOutput("boxplot")),
# PCA
tabPanel("PCA", plotOutput("pca", brush = "pca_brush"), verbatimTextOutput("pca_info")), # interactive PCA plot
# HEATMAPS
tabPanel("Heatmaps",
tabsetPanel(type = "tabs",
tabPanel("Experiments", plotOutput("heatExp")), # distance heatmap of experiment data
tabPanel("Genes", # tabPanel for heatmap of high variance genes
sidebarPanel(
h4("Select amount of Genes:"),
sliderInput("geneHeatNo", # slider to select amount of genes
"Number",
min = 5,
max = 200,
step = 1,
value = 20),
h4("Plot height:"),
sliderInput("geneHeatHeight",
"Pixels",
min = 400,
max = 2000,
step = 10,
value = 500),
actionButton("plotGeneHeat", "Refresh Plot!", width = '100%', class = "btn-warning")
),
mainPanel(plotOutput("heatGene"))
) # tabPanel "Genes" close
) # tabsetPanel close
), # tabPanel "Heatmaps" close
# VOLCANO PLOT
tabPanel("Volcano",
sidebarPanel(
h4("Select LogFC Threshold:"),
sliderInput("volcFcThr", # slider to select threshold for the logFC of the volcanoplot
"Threshold (absolute)",
min = 0,
max = 3,
step = 0.1,
value = 1),
actionButton("volcPlot", "Refresh Plot!", width = '100%', class = "btn-warning")
),
mainPanel(plotOutput("volc", brush = "volc_brush"), verbatimTextOutput("volc_info")))
)
) # tabPanel close
) # navBarPage close
) # ui close
#### ========= SERVER ========== ####
server = shinyServer(function(input, output, session){
options(shiny.sanitize.errors = TRUE)
observeEvent(input$analyze, {
## Error message if data has not been uploaded before ##
if(is.null(input$countFile) | is.null(input$infoFile) | is.null(input$gffFile)){
showNotification("Please upload count data, sample preparation info and .gff-file", type = "error")
}
})
##############
### UPLOAD ###
##############
## Display Data if user presses 'Upload!' button ##
observeEvent(input$upload,{
## Exception handling and display of error message if data is missing ##
if(is.null(input$countFile) | is.null(input$infoFile) | is.null(input$gffFile)){
showNotification("Please upload count data, sample preparation info and .gff-file", type = "error")
}
req(input$countFile)
req(input$infoFile)
req(input$gffFile)
## INPUT RAW DATA ##
countFile = input$countFile
rawdat = read.table(countFile$datapath, header = TRUE)
## INPUT INFO DATA ##
infoFile = input$infoFile
infodat = read.csv(infoFile$datapath, sep = '\t')
## INPUT GFF FILE ##
gffFile = input$gffFile
gffdat = as.data.frame(readGFF(gffFile$datapath))
## SORT DATA ##
dats = sortThatData(rawdat, infodat, gffdat)
## DISPLAY DATA ##
output$countTable = renderTable(dats[[1]], rownames = TRUE)
output$designTable = renderTable(dats[[2]], rownames = TRUE)
## UPDATE SELECINPUT BASED ON INFO DATA ##
updateSelectInput(session, "variable", choices = factor(colnames(dats[[2]])))
##################
### RUN DESEQ2 ###
##################
observeEvent(input$analyze, {
## DESIGN MATRIX ##
dsm = model.matrix(~dats[[2]][, c(input$variable)]) # selects column from info data and creates design matrix to be used in the following command
## CREATE DESEQ DATASET ##
dds = DESeqDataSetFromMatrix(countData = dats[[1]][-1], colData = dats[[2]], design = dsm) # ignore GeneName Column when building DESeq Object
dds = DESeq(dds) # vst, quantil, tpm
## DISPLAY NORMALIZED COUNTS ##
# normalization based on selected method (radio button)
if(input$normMethod == "Size Factor Division"){
normCounts = counts(dds, normalized = TRUE)
}
else if(input$normMethod == "VST"){
normObject = varianceStabilizingTransformation(dds) # S4 object, will e.g. be used in PCA
normCounts = assay(normObject)
}
# else if(input$normMethod == "Quantile Normalization"){
# # Quantile normalization is not included in DESeq2 => log-transform counts => remove -inf-values => normalize
# logCount = logTransform(dats[[1]][,-1])
# normCounts = normalize.quantiles(as.matrix(logCount), copy = TRUE)
# }
output$normalizedTable = renderTable(normCounts, rownames = TRUE)
## DISPLAY RESULTS ##
ddsRes = results(dds, alpha = input$alpha) # significance level is chosen by user via slider
output$resTable = renderTable(as.data.frame(ddsRes), rownames = TRUE)
# in case user specified a different normalization method, display message that results table and volcano plots are still based on DESeq standard:
if(input$normMethod != "Size Factor Division"){
output$resText = renderText("NOTE: Differential Expression Results will always be based on DESeq2's standard normalization method (Size Factor Division).")
}
##################
##### PLOTS ######
##################
#### PCA ####
# plot PCA based on chosen normalization method
if(input$normMethod == "Size Factor Division"){
pca = plotPCA(rlog(dds), intgroup = c(input$variable))
}
else{
pca = plotPCA(normObject, intgroup = c(input$variable))
}
# plot
output$pca = renderPlot({pca})
# pca interactive brush info
output$pca_info = renderPrint({
brushedPoints(pca[["data"]], input$pca_brush)
})
#### VOLCANO PLOT ####
observeEvent(input$volcPlot, {
# in case user specified a different normalization method, display message that results table and volcano plots are still based on DESeq standard:
if(input$normMethod != "Size Factor Division"){
showNotification("NOTE: Volcano plot is based on Size Factor Divison.")
}
fc_bound = input$volcFcThr
# transform results data
res = na.omit(as.data.frame(ddsRes))
# significance
res$Expression = "NS" # create new column "significance", initially all genes = NS
res[res$log2FoldChange >= fc_bound & res$padj < input$alpha,]$Expression = "UP" # UP if padj > alpha & logFC >= fc threshold
res[res$log2FoldChange <= -fc_bound & res$padj < input$alpha,]$Expression = "DOWN" # DOWN if padj > alpha & logFC <= - fc threshold
# new column with -log10(padj) - interactive shiny CAN'T handle if you change parameters in aes() of ggplot and behaves weird
res$neglog10_p_value = -log10(res$padj)
# plot:
vp = ggplot(res, aes(x = log2FoldChange, y = neglog10_p_value, color = Expression, tooltip = padj))
output$volc = renderPlot({
vp +
# scatter:
geom_point() +
# lines (alpha and logFC):
geom_hline(yintercept = (log10(input$alpha)/log10(10))*(-1), color = "darkgrey") + # horizontal for alpha
geom_vline(xintercept = c(fc_bound, -fc_bound), color = "darkgrey") + # vertical for fc and -fc
# color:
scale_color_manual(values = c("red", "black", "blue")) +
# x-axis ticks:
scale_x_continuous(breaks = c(round(min(res$log2FoldChange))):round(max(res$log2FoldChange))) # integers from rounded minimum to maximum of the log2FC
}) # render volcano plot close
# volcano plot interactive brush info
output$volc_info = renderPrint({
brushedPoints(res, input$volc_brush)
})
}) # volcano plot button close
#### HEATMAP OF EXPERIMENTS ####
log2normCounts = normCounts
# if data was normalized by size factor division => data is not yet log transformed!
if(input$normMethod == "Size Factor Division"){
# log2normCounts = log2(log2normCounts) # log of size factor counts, this produces -inf counts were counts were filtered (set to 0) by DESeq
# log2normCounts[log2normCounts == -Inf] = NA # set these values to NA
# log2normCounts = na.omit(log2normCounts) # omit NA rows
log2normCounts = logTransform(normCounts)
}
# calculate distance
samp_dist = dist(t(log2normCounts))
# render plot
plotExpr = pheatmap(as.matrix(samp_dist))
output$heatExp = renderPlot({plotExpr})
#### HEATMAP OF TOP GENES (BASED ON VARIANCE) ####
observeEvent(input$plotGeneHeat, {
# Selection of genes:
numberOfGenes = input$geneHeatNo # number of genes the user wants to display
highVarIndex = head(order(rowVars(log2normCounts), decreasing = TRUE), numberOfGenes) # indexes of the [numberOfGenes] with highest variance
topVarGenes = log2normCounts[highVarIndex, ] # subset log2 transformed dataset accordingly
topVarGenes = topVarGenes - rowMeans(topVarGenes) # mean centering to acquire (log2-)deviation from the mean
# column annotation:
colAnno = data.frame(colData(dds)[, c(input$variable)]) # annotation is based on the experimental variables the user chose before pressing the analyze button!
row.names(colAnno) = row.names(colData(dds)) # if only one variable is selected, R omits the rownames meaning the need to be re-specified!
colnames(colAnno) = input$variable # format column name
plotGenes = pheatmap(topVarGenes, annotation_col = colAnno)
# plot heatmap:
output$heatGene = renderPlot({plotGenes}, height = input$geneHeatHeight)
}) # gene Heatmap button close
#### BOXPLOTS ####
output$boxplot = renderPlot(boxplot(log2normCounts))
}) # analyze button close
}) # upload button close
}) # server close
#### ======== START APP ======== ####
shinyApp(ui, server)
#### ======== START APP ======== ####
shinyApp(ui, server)
library(DESeq2)
library(pheatmap)
#----read/transform data ----
dat = read.table("./counts.txt", header = TRUE)
row.names(dat) = dat$Geneid
dat = dat[,-(1:7)] #not required
#----Info data
info = read.csv('./QVTLF_sample_preparations.tsv', sep = '\t')
row.names(info) = info[,1] #For boolean masking
#----provided info data is not structured according to colnames order :-(
vec = numeric(0)
#compare count columns to info data
for(i in 1:ncol(dat)){
checkCol = colnames(dat)[i]
for(j in 1:nrow(info)){
if(grepl(info[j, 1], checkCol)){
vec[i] = info[j, 1]
}
}
}
info = info[vec,] #sort accordingly
colnames(dat) = vec
#----Make new info data----
hours = as.factor(c(5, 2, 2, 5, 2, 2, 5, 2, 2, 5, 5, 5)) #just read it from the samples infos...ugly, aber passt schon für's Einlernen? :-)
type = info$Condition..strain_or_phenotype
newInf = data.frame(info$QBiC.Code, hours, type)
#----Start DESeq-Action----
dds = DESeqDataSetFromMatrix(countData = dat, colData = newInf, design = ~type) #this design made the most sense to me. Is this the same as a linear model?
#PCA
plotPCA(rlog(dds), intgroup = c(colnames(colData(dds))[2], "hours"))
# Trying to make my own PCA
pca_data = plotPCA(rlog(dds), intgroup = c("type", "hours"))
View(pca_data)
View(as.data.frame(pca_data))
ggplot(pca_data[["data"]], aes(x = PC1, y = PC2, color = type, shape = hours)) +
geom_point(size = 2) +
theme(legend.title = element_blank()) +
labs(xlab = pca_data[["labels"]][["x"]])
library(ggplot2)
ggplot(pca_data[["data"]], aes(x = PC1, y = PC2, color = type, shape = hours)) +
geom_point(size = 2) +
theme(legend.title = element_blank()) +
labs(xlab = pca_data[["labels"]][["x"]])
pca_data[["labels"]][["x"]]
ggplot(pca_data[["data"]], aes(x = PC1, y = PC2, color = type, shape = hours)) +
geom_point(size = 2) +
theme(legend.title = element_blank()) +
labs(xlab = "ji")
ggplot(pca_data[["data"]], aes(x = PC1, y = PC2, color = type, shape = hours)) +
geom_point(size = 2) +
theme(legend.title = element_blank()) +
labs(xlab = "ji")
?labs
ggplot(pca_data[["data"]], aes(x = PC1, y = PC2, color = type, shape = hours)) +
geom_point(size = 2) +
theme(legend.title = element_blank()) +
labs(x = pca_data[["labels"]][["x"]])
setwd("./Shiny_DESeq2_Tool")
source("./Components/ShinySeq_Packages.R")
source("./Components/ShinySeq_Functions.R")
source("./Components/ShinySeq_UI.R")
source("./Components/ShinySeq_Server.R")
shinyApp(ui, server)
source("./Components/ShinySeq_Packages.R")
source("./Components/ShinySeq_Functions.R")
source("./Components/ShinySeq_UI.R")
source("./Components/ShinySeq_Server.R")
shinyApp(ui, server)
#----Heatmap ----
deseq_norm[deseq_norm == -Inf] = 0
deseq_norm = log2(counts(dds, normalized = TRUE))
dds = DESeq(dds)
deseq_norm = log2(counts(dds, normalized = TRUE))
#----Heatmap ----
deseq_norm[deseq_norm == -Inf] = 0
samp_dist = dist(t(deseq_norm))
pheatmap(as.matrix(samp_dist))
dist(t(deseq_norm))
View(dist(t(deseq_norm)))
# heatmap of genes:
geneIndex = head(order(rowVars(deseq_norm), decreasing = TRUE), 20)
selGenes = deseq_norm[geneIndex,]
selGenes = selGenes - rowMeans(selGenes)
anno = data.frame(colData(dds)[, c("type")])
row.names(anno) = row.names(colData(dds))
pheatmap(selGenes, annotation_col = anno)
pheatmap(as.matrix(samp_dist))
?pheatmap
pheatmap(as.matrix(samp_dist), color = c("green", "red"))
makeColorRampPalette()
colorRampPalette()
colorRampPalette("green", "red")
colorRampPalette("green", "red", length = 100)
colorRampPalette(c("green", "red"), length = 100)
colorRampPalette(c("green", "red"))(length = 100)
colorRampPalette(c("green", "red"))(100)
pheatmap(as.matrix(samp_dist), color = colorRampPalette(c("green", "red"))(100))
# heatmap of genes:
geneIndex = head(order(rowVars(deseq_norm), decreasing = TRUE), 100)
pheatmap(as.matrix(samp_dist), color = colorRampPalette(c("white", "red"))(100))
pheatmap(as.matrix(samp_dist), color = colorRampPalette(c("white", "orange", "red"))(100))
pheatmap(as.matrix(samp_dist), color = colorRampPalette(c("white", "orange", "yellow" , "red"))(100))
pheatmap(as.matrix(samp_dist), color = colorRampPalette(c("white", "yellow" , "red"))(100))
pheatmap(as.matrix(samp_dist), color = colorRampPalette(c("black", "yellow" , "red"))(100))
source("./Components/ShinySeq_Server.R")
shinyApp(ui, server)
source("./Components/ShinySeq_Server.R")
shinyApp(ui, server)
source("./Components/ShinySeq_Server.R")
shinyApp(ui, server)
source("./Components/ShinySeq_Server.R")
shinyApp(ui, server)
source("./Components/ShinySeq_Server.R")
shinyApp(ui, server)
source("./Components/ShinySeq_Server.R")
shinyApp(ui, server)
source("./Components/ShinySeq_Server.R")
shinyApp(ui, server)
source("./Components/ShinySeq_Server.R")
shinyApp(ui, server)
source("./Components/ShinySeq_Server.R")
shinyApp(ui, server)
source("./Components/ShinySeq_Server.R")
shinyApp(ui, server)
source("./Components/ShinySeq_Server.R")
shinyApp(ui, server)
shinyApp(ui, server)
install.packages('rsconnect')
install.packages("rsconnect")
install.packages("Bioconductor")
install.packages("BiocManager")
install.packages("BiocManager")
source("./Components/ShinySeq_Packages.R")
source("./Components/ShinySeq_Functions.R")
source("./Components/ShinySeq_UI.R")
source("./Components/ShinySeq_Server.R")
shinyApp(ui, server)
source("./Components/ShinySeq_Packages.R")