|
3 | 3 | ## Publications by the IDC team
|
4 | 4 |
|
5 | 5 | 1. Fedorov, A., Longabaugh, W. J. R., Pot, D., Clunie, D. A., Pieper, S. D., Gibbs, D. L., Bridge, C., Herrmann, M. D., Homeyer, A., Lewis, R., Aerts, H. J. W., Krishnaswamy, D., Thiriveedhi, V. K., Ciausu, C., Schacherer, D. P., Bontempi, D., Pihl, T., Wagner, U., Farahani, K., Kim, E. & Kikinis, R. _National Cancer Institute Imaging Data Commons: Toward Transparency, Reproducibility, and Scalability in Imaging Artificial Intelligence_. RadioGraphics (2023). [https://doi.org/10.1148/rg.230180](https://doi.org/10.1148/rg.230180)
|
6 |
| -2. Thiriveedhi, V. K., Krishnaswamy, D., Clunie, D., Pieper, S., Kikinis, R. & Fedorov, A. Cloud-based large-scale curation of medical imaging data using AI segmentation. _Research Square_ (2024). [https://doi.org/10.21203/rs.3.rs-4351526/v1](https://doi.org/10.21203/rs.3.rs-4351526/v1) |
7 |
| -3. Fedorov, A., Longabaugh, W. J. R., Pot, D., Clunie, D. A., Pieper, S., Aerts, H. J. W. L., Homeyer, A., Lewis, R., Akbarzadeh, A., Bontempi, D., Clifford, W., Herrmann, M. D., Höfener, H., Octaviano, I., Osborne, C., Paquette, S., Petts, J., Punzo, D., Reyes, M., Schacherer, D. P., Tian, M., White, G., Ziegler, E., Shmulevich, I., Pihl, T., Wagner, U., Farahani, K. & Kikinis, R. NCI Imaging Data Commons. _Cancer Res._ 81, 4188–4193 (2021). [http://dx.doi.org/10.1158/0008-5472.CAN-21-0950](http://dx.doi.org/10.1158/0008-5472.CAN-21-0950) |
8 |
| -4. Gorman, C., Punzo, D., Octaviano, I., Pieper, S., Longabaugh, W. J. R., Clunie, D. A., Kikinis, R., Fedorov, A. Y. & Herrmann, M. D. Interoperable slide microscopy viewer and annotation tool for imaging data science and computational pathology. _Nat. Commun._ 14, 1–15 (2023). [http://dx.doi.org/10.1038/s41467-023-37224-2](http://dx.doi.org/10.1038/s41467-023-37224-2) |
9 |
| -5. Bridge, C. P., Gorman, C., Pieper, S., Doyle, S. W., Lennerz, J. K., Kalpathy-Cramer, J., Clunie, D. A., Fedorov, A. Y. & Herrmann, M. D. Highdicom: a Python Library for Standardized Encoding of Image Annotations and Machine Learning Model Outputs in Pathology and Radiology. _J. Digit. Imaging_ 35, 1719–1737 (2022). [http://dx.doi.org/10.1007/s10278-022-00683-y](http://dx.doi.org/10.1007/s10278-022-00683-y) |
10 |
| -6. Schacherer, D. P., Herrmann, M. D., Clunie, D. A., Höfener, H., Clifford, W., Longabaugh, W. J. R., Pieper, S., Kikinis, R., Fedorov, A. & Homeyer, A. The NCI Imaging Data Commons as a platform for reproducible research in computational pathology. _Comput. Methods Programs Biomed._ 107839 (2023). doi:[10.1016/j.cmpb.2023.107839](https://dx.doi.org/10.1016/j.cmpb.2023.107839) |
11 |
| -7. Krishnaswamy, D., Bontempi, D., Thiriveedhi, V., Punzo, D., Clunie, D., Bridge, C. P., Aerts, H. J., Kikinis, R. & Fedorov, A. Enrichment of the NLST and NSCLC-Radiomics computed tomography collections with AI-derived annotations. arXiv \[cs.CV] (2023). at <[http://arxiv.org/abs/2306.00150](http://arxiv.org/abs/2306.00150)> |
12 |
| -8. Bontempi, D., Nuernberg, L., Pai, S., Krishnaswamy, D., Thiriveedhi, V., Hosny, A., Mak, R. H., Farahani, K., Kikinis, R., Fedorov, A. & Aerts, H. J. W. L. End-to-end reproducible AI pipelines in radiology using the cloud. _Nat. Commun._ 15, 6931 (2024). [http://dx.doi.org/10.1038/s41467-024-51202-2](http://dx.doi.org/10.1038/s41467-024-51202-2) |
13 |
| -9. Krishnaswamy, D., Bontempi, D., Thiriveedhi, V. K., Punzo, D., Clunie, D., Bridge, C. P., Aerts, H. J. W. L., Kikinis, R. & Fedorov, A. Enrichment of lung cancer computed tomography collections with AI-derived annotations. _Sci. Data_ 11, 1–15 (2024). [https://www.nature.com/articles/s41597-023-02864-y](https://www.nature.com/articles/s41597-023-02864-y) |
14 |
| -10. Murugesan, G. K., McCrumb, D., Aboian, M., Verma, T., Soni, R., Memon, F., Farahani, K., Pei, L., Wagner, U., Fedorov, A. Y., Clunie, D., Moore, S. & Van Oss, J. The AIMI Initiative: AI-Generated Annotations for Imaging Data Commons Collections. _arXiv \[eess.IV]_ (2023). at [http://arxiv.org/abs/2310.14897](http://arxiv.org/abs/2310.14897) |
| 6 | +2. Weiss, J., Bernatz, S., Johnson, J., Thiriveedhi, V., Mak, R. H., Fedorov, A., Lu, M. T. & Aerts, H. J. W. Opportunistic assessment of steatotic liver disease in lung cancer screening eligible individuals. _J. Intern. Med._ (2025). [https://doi.org/10.1111/joim.20053](https://doi.org/10.1111/joim.20053) |
| 7 | +3. Thiriveedhi, V. K., Krishnaswamy, D., Clunie, D., Pieper, S., Kikinis, R. & Fedorov, A. Cloud-based large-scale curation of medical imaging data using AI segmentation. _Research Square_ (2024). [https://doi.org/10.21203/rs.3.rs-4351526/v1](https://doi.org/10.21203/rs.3.rs-4351526/v1) |
| 8 | +4. Fedorov, A., Longabaugh, W. J. R., Pot, D., Clunie, D. A., Pieper, S., Aerts, H. J. W. L., Homeyer, A., Lewis, R., Akbarzadeh, A., Bontempi, D., Clifford, W., Herrmann, M. D., Höfener, H., Octaviano, I., Osborne, C., Paquette, S., Petts, J., Punzo, D., Reyes, M., Schacherer, D. P., Tian, M., White, G., Ziegler, E., Shmulevich, I., Pihl, T., Wagner, U., Farahani, K. & Kikinis, R. NCI Imaging Data Commons. _Cancer Res._ 81, 4188–4193 (2021). [http://dx.doi.org/10.1158/0008-5472.CAN-21-0950](http://dx.doi.org/10.1158/0008-5472.CAN-21-0950) |
| 9 | +5. Gorman, C., Punzo, D., Octaviano, I., Pieper, S., Longabaugh, W. J. R., Clunie, D. A., Kikinis, R., Fedorov, A. Y. & Herrmann, M. D. Interoperable slide microscopy viewer and annotation tool for imaging data science and computational pathology. _Nat. Commun._ 14, 1–15 (2023). [http://dx.doi.org/10.1038/s41467-023-37224-2](http://dx.doi.org/10.1038/s41467-023-37224-2) |
| 10 | +6. Bridge, C. P., Gorman, C., Pieper, S., Doyle, S. W., Lennerz, J. K., Kalpathy-Cramer, J., Clunie, D. A., Fedorov, A. Y. & Herrmann, M. D. Highdicom: a Python Library for Standardized Encoding of Image Annotations and Machine Learning Model Outputs in Pathology and Radiology. _J. Digit. Imaging_ 35, 1719–1737 (2022). [http://dx.doi.org/10.1007/s10278-022-00683-y](http://dx.doi.org/10.1007/s10278-022-00683-y) |
| 11 | +7. Schacherer, D. P., Herrmann, M. D., Clunie, D. A., Höfener, H., Clifford, W., Longabaugh, W. J. R., Pieper, S., Kikinis, R., Fedorov, A. & Homeyer, A. The NCI Imaging Data Commons as a platform for reproducible research in computational pathology. _Comput. Methods Programs Biomed._ 107839 (2023). doi:[10.1016/j.cmpb.2023.107839](https://dx.doi.org/10.1016/j.cmpb.2023.107839) |
| 12 | +8. Krishnaswamy, D., Bontempi, D., Thiriveedhi, V., Punzo, D., Clunie, D., Bridge, C. P., Aerts, H. J., Kikinis, R. & Fedorov, A. Enrichment of the NLST and NSCLC-Radiomics computed tomography collections with AI-derived annotations. arXiv \[cs.CV] (2023). at <[http://arxiv.org/abs/2306.00150](http://arxiv.org/abs/2306.00150)> |
| 13 | +9. Bontempi, D., Nuernberg, L., Pai, S., Krishnaswamy, D., Thiriveedhi, V., Hosny, A., Mak, R. H., Farahani, K., Kikinis, R., Fedorov, A. & Aerts, H. J. W. L. End-to-end reproducible AI pipelines in radiology using the cloud. _Nat. Commun._ 15, 6931 (2024). [http://dx.doi.org/10.1038/s41467-024-51202-2](http://dx.doi.org/10.1038/s41467-024-51202-2) |
| 14 | +10. Krishnaswamy, D., Bontempi, D., Thiriveedhi, V. K., Punzo, D., Clunie, D., Bridge, C. P., Aerts, H. J. W. L., Kikinis, R. & Fedorov, A. Enrichment of lung cancer computed tomography collections with AI-derived annotations. _Sci. Data_ 11, 1–15 (2024). [https://www.nature.com/articles/s41597-023-02864-y](https://www.nature.com/articles/s41597-023-02864-y) |
| 15 | +11. Murugesan, G. K., McCrumb, D., Aboian, M., Verma, T., Soni, R., Memon, F., Farahani, K., Pei, L., Wagner, U., Fedorov, A. Y., Clunie, D., Moore, S. & Van Oss, J. The AIMI Initiative: AI-Generated Annotations for Imaging Data Commons Collections. _arXiv \[eess.IV]_ (2023). at [http://arxiv.org/abs/2310.14897](http://arxiv.org/abs/2310.14897) |
15 | 16 |
|
16 | 17 | ## Publications referencing IDC (a subset)
|
17 | 18 |
|
|
0 commit comments